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Abstract

Graphical User Interface (GUI) testing, despite its time-consuming nature, re-
mains a dominantly manual task due to the combinatorial complexity and infi-
nite unique states posed by user inputs. This thesis presents a novel approach
to tackle this challenge by proposing an autonomous reinforcement learning (RL)
agent designed to mimic a human tester. The agent learns to interact with a
web application’s GUI, thereby uncovering potential bugs and faults in the inter-
face. The system uses the Soft-Actor-Critic algorithm and is trained solely on GUI
screenshots and a reward signal, allowing it to iteratively learn a policy for ef-
fective exploration of the GUI. On average, the proposed system outperforms a
Q-learning baseline by 91% and inexperienced human testers by 67% while ap-
proaching the ability of expert human testers in certain web apps. Additionally, the
system demonstrated remarkable generalisability across different types of web ap-
plications and showed the efficacy of transfer learning. This enabled the setup of
a custom web app testing agent within just one hour of training on a conventional
laptop. By bypassing the need for time-consuming setup and maintenance of pre-
defined test cases, this strategy significantly enhances the efficiency of automated
GUI testing. The full project repository, including a standard OpenAI Gymnasium
environment, is made publicly available as a supplementary outcome to facilitate
reproduction and further research of autonomous web app testing.
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1 Introduction

1 Introduction

1.1 Problem Statement

The central objective of this project is to design and develop a fully automated
testing system proficient in detecting faults within the Graphical User Interface
(GUI) of web applications. Rather than relying on predefined test cases, the pro-
posed system should utilise reinforcement learning to autonomously interact with
the GUI in a manner similar to human users. The aim is to provoke and identify
faults that would typically surface during human interaction. More specifically, by
observing the state of the GUI and subsequently predicting click coordinates, the
system should effectively explore the various states and areas within the GUI ap-
plication. Hence, the challenge lies in developing an agent capable of learning ef-
fective exploration strategies for GUI testing, thereby maximising the detection of
potential faults without manual effort. The final deliverable of this project will be
a software package equipped with all necessary reinforcement learning algorithms
and associated infrastructure, designed to facilitate the training and deployment
of the automated testing system on any custom web application.

1.2 Motivation

Software testing serves as an irreplaceable component of the software develop-
ment lifecycle, contributing significantly towards the production of high-quality
software [6]. The inability to detect and correct software faults can have severe
implications, even leading to substantial financial losses. It is estimated that in the
US alone the cost of poor quality software amounts to an annual cost of over $2
trillion US [31].

The centrality of software testing in the development lifecycle is further empha-
sised by the considerable investment of time and financial resources it demands. In
particular, developers are known to dedicate a large proportion of their available
time to software testing. Estimates for this commitment range from 28% [20]
up to 50% [11] of the total time of the developers working hours. Despite this
large time commitment, almost 80% [20] of the testing undertaken in software
development teams remains a manual, rather than an automated effort.

In terms of time devoted to different types of testing, the testing of GUIs is
among the most time-consuming types of testing. Existing automation tools that
serve the purpose to make testing more efficient face significant barriers to adop-
tion, which include the high associated costs and required time [20] for the setup
and maintenance of such tools. Even if successfully implemented, GUI test au-
tomation tools are not the ‘magic’ solution and bear a range of unsolved technical
difficulties. The vast number of potential combinations of user inputs and resulting
states mean that there are close to infinite paths [42] through a typical GUI appli-
cation, which prohibits a naive exhaustive testing method. A common approach
to automating test case execution for GUIs is to specify test scripts, which outline
the step-by-step sequence of simulated user inputs to the GUI. Another common
method is to build up a separate model of the GUI with the corresponding state
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1 Introduction

transitions, from which test sequences can be generated automatically [5]. An-
other long-standing approach is to use record and replay techniques, where an
expert first demonstrates a specific interaction sequence, which is then stored to
be automatically replayed at test time [8]. One drawback that all these tech-
niques have in common is that changes to the user interface, such as new features
or changes to the application layout can disrupt existing test case sequences, ne-
cessitating manual updates to the test cases. Furthermore, highly dynamic and
non-deterministic GUIs exist, which also pose their own distinct challenges, as
exact test acceptance conditions might be unknown [42]. All of these outlined
challenges, as well as the potential benefits of efficient test automation, make it
an interesting topic of research.

Reinforcement learning (RL), a subclass of machine learning, is a method
where an autonomous agent learns to make decisions by taking actions in an envi-
ronment. The agent learns from the consequences of its actions, rather than from
being explicitly taught, progressively adjusting its behaviour to maximise a given
reward signal [52]. Reinforcement learning has been the underpinning technol-
ogy behind many recent high-profile achievements in artificial intelligence (AI).
Perhaps most notably, Google’s DeepMind utilised deep reinforcement learning to
train its AlphaGo program, which famously defeated a world champion Go player
[50]. This was a major milestone in AI research, as Go is a complex and strate-
gic board game with an enormous number of possible states, far too many to be
solved by any brute force or exhaustive search method. RL methods generally
excel in settings that face common challenges with automating GUI testing, such
as dealing with large state spaces, where exhaustive sweeps of all the states are
impractical [52]. Training reinforcement learning agents to automatically interact
with software systems that are designed for human users has been proven success-
ful previously, where reinforcement learning agents were trained to learn how to
play ATARI games [40] solely by receiving pixel inputs of the screen and outputting
user control inputs. In these experiments, a reward function was provided which
would cause the agent to seek a game strategy that would maximise the score
of the game. Importantly, the agent learned to outperform even human players
solely from being provided high-level signals such as the score and observations
of the environment, without any prior knowledge of the rules or strategy of the
game. These interesting applications of RL spark the question: could an RL agent
be trained to mimic a human tester, independently interacting with a GUI to iden-
tify potential faults? The agent could be given access to a GUI application with
the goal to learn how to fully independently interact with the GUI to efficiently
explore the GUI and uncover potential faults. An agent with this capability could
be executed autonomously and any reported faults could be reported back to the
developers without any manual effort required in the testing loop.

For this research, the focus has been intentionally placed on web applications
as the system under test (SUT). In its early years, the web primarily consisted
of simple static pages, serving primarily as a document-sharing platform. Today,
it has evolved into a general-purpose application environment [53]. Examples
that demonstrate the capability of modern web applications include the browser-
based version of the popular photo editing software Photoshop [4], dynamic video
content sharing platforms like YouTube [58], and even complex engineering CAD
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1 Introduction

software like AutoCAD [7]. Unlike traditional binary applications that require
download and installation, web applications like these can be deployed and ac-
cessed globally instantly, favouring practices like continuous deployment (CD)
[48]. CD is a software engineering approach where new software versions are
typically tested and deployed automatically on a continuous rolling basis which
shortens development cycles. This quick pace underscores the need for robust
automated testing strategies, as more frequent deployments demand frequent test
executions. The demand for automated tests for web applications hence motivates
the development of better test automation for this type of GUI application.

1.3 Project Objectives

A GUI testing system is required to perform two separate tasks. Firstly, it must
provoke faults in the GUI through simulated user interaction, which should ex-
pose as many possible meaningful states of the GUI. The second task consists of
the actual identification of faults within the discovered GUI states. Faults can
range from simple errors to application crashes [37] [38] to more challenging is-
sues such as visual and layout bugs [34]. This thesis will focus on the first task,
which is the efficient generation of simulated user interactions with the interface
and limit the fault detection to easy-to-detect, yet common JavaScript exceptions
[44]. In summary, the ultimate goal of this project is a fully autonomous system
that could be deployed to a desired web application deployment pipeline, where
it autonomously emulates a human user to uncover and report faults back to the
developers. To achieve this, the following high-level objectives have been identi-
fied:

• Conduct a comprehensive review of the existing automated GUI exploration
methods, understanding their capabilities and identifying any limitations.

• Formulate the autonomous exploration of GUIs as an RL problem

• Develop a compatible RL environment that enables reinforcement learning
agents to interact with the GUIs of browser-based web applications.

• Investigate various possibilities for defining suitable reward functions that
encourage effective learning, and subsequently implement them.

• Explore, test and iteratively refine the architectural choices of the proposed
autonomous testing system.

• Implement baseline models from existing literature. Establish a human base-
line by collecting GUI interaction data from human testers.

• Evaluate the proposed system and identify the strengths and weaknesses of
the proposed method.

3



1 Introduction

1.4 Report Structure

Chapter 1: Introduction This chapter gave a high-level problem statement, pro-
vided motivation for carrying out the research and finally formulated a list of ob-
jectives to be addressed.

Chapter 2: Background The next chapter gives an overview of the existing lit-
erature and theoretical perspectives relevant to the topic. It explores previous
studies, models, and concepts that lay the foundation for this research.

Chapter 3: Requirements Capture The third chapter captures the project re-
quirements. It elaborates on the criteria that the solution must meet and specifies
the technical and user requirements of the system.

Chapter 4: Analysis and Design The fourth chapter discusses the analysis of
the collected requirements and how they informed the design of the solution. This
chapter also presents the overall architecture of the proposed system.

Chapter 5: Implementation The fifth chapter covers the implementation of the
proposed design. It presents the process, technologies used, and key challenges
faced during the development phase.

Chapter 6: Experimental Setup The sixth chapter describes the research ques-
tions and the experiment setup aimed to gather empirical data on individual de-
sign choices and system performance.

Chapter 7: Experiment Results The seventh chapter presents the results, inter-
pretation and discussion of the experiment outcomes.

Chapter 8: Evaluation The eighth chapter evaluates the system against the ini-
tial requirements and objectives. It assesses the implications of the results, the
limitations, and the potential impact of the system.

Chapter 9: Conclusions and Further Work The final chapter concludes the
report, reflecting on the findings and their implications. It also presents potential
avenues for future research and development.

Appendix The Appendix includes the source code and a user guide to enable the
use of the developed system.
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2 Background

2 Background

This chapter gives an overview of the existing literature and theoretical back-
ground relevant to the topic. It will start off by laying out the different types
of faults that are commonly present in a GUI application. It will then proceed with
outlining the traditional testing techniques that are employed in the industry to
automate the detection and prevention of such issues. An overview of the testing
frameworks specific in the context of browser-based web applications will follow.
Afterwards, the machine learning background, which includes an introduction to
reinforcement learning as well as a high-level overview of relevant RL algorithms
will be provided. Alongside this, Convolutional Neural Networks will be intro-
duced. Finally, the directly related work of reinforcement learning applied to the
testing of GUIs will be laid out.

2.1 Types of GUI Faults

To fully understand the potential benefits of a testing system, it is important to un-
derstand the potential faults that are likely to be introduced through the absence
of effective testing mechanisms. In this report, the term fault is used as a general
term that includes bugs, errors and layout issues. From the reviewed literature,
the most common types of faults can be divided into two separate categories: logic
faults and appearance faults [22].

The first class of faults, namely logic or functional faults are a group of errors
where the application under test does not behave as expected. The majority of
dynamic interactions in a browser are facilitated through the use of JavaScript
[41]. Therefore, faults in the GUI frequently materialise as JavaScript errors [44]
which may cause the web application to become unusable, cause loss of user data
or cause the application to ‘hang’. As will be discussed later on, the detection of
functional faults is straightforward, as such errors show up in the JavaScript logs.

The second class of faults are visual faults. These are errors in the GUI lay-
out and its components, and different studies derived varying classifications. The
two related studies Owl Eyes [34] and Nighthawk [33] classify visual faults into
5 categories. These are component occlusion, text overlap, missing images, NULL
values displayed, and blurred screens. They arrived at this classification by manu-
ally finding and classifying 4470 faults in the ‘Rico’ data set [15], which contains
screenshots of user interfaces. The detection of this second type of fault category
proves to be significantly more challenging, as appearance-based faults tend to
cause no detectable side effects, such as error logs, and tend to only cause visual
changes and discomfort to a user.

As this project will focus exclusively on the detection of JavaScript exceptions,
it is important to acknowledge the diversity of possible fault types beyond this, to
allow for a thorough understanding of the system’s limitations later. The detection
of more advanced fault types is beyond the scope of this project and the addition
of more sophisticated fault types will be left for future research.

5



2 Background

2.2 Traditional Techniques for GUI Testing

This section serves the purpose of giving an overview of the existing traditional
techniques that are commonly used in the industry today to test GUIs. By under-
standing the strengths and limitations of current GUI test automation, this project
will be able to work towards overcoming problems with traditional methods.

2.2.1 Scripted Tests

Scripted GUI testing is a method of testing a software application by following
a pre-defined test plan. The test plan contains sequential actions describing the
interaction steps with the GUI. Such steps could be clicking on specific GUI ele-
ments, scrolling or inputting values into text fields. The test script can then check
for certain expected properties or states in the GUI to determine if the test passes
or fails. Generally, such test cases are manually defined and an example is given
as pseudo-code:

1: Input: Web Application
2: LaunchBrowser()
3: NavigateToLoginPage()
4: EnterUsername(”testuser”)
5: EnterPassword(”testpass”)
6: ClickLoginButton()
7: welcomeMessage ← GetWelcomeMessage()
8: if welcomeMessage == ”Welcome, testuser” then
9: set test passed to false

10: else
11: set test passed to true
12: end if
13: CloseBrowser()
14: Output: test passed

1
Figure 1: Example Pseudo-Code for a Scripted Test that tests a Login Process

Scripted test cases are a reliable method of testing key aspects of a GUI, how-
ever, they entail a range of drawbacks. One of the main disadvantages is the high
cost to set up, as they require significant manual effort to implement. Additionally,
the test cases have to be constantly adapted to changes in the GUI which adds a
high cost of maintenance. Furthermore, scripted GUI testing may not represent
actual user interactions, as it only tests the functionality based on pre-defined
scenarios, which may not reflect the ways a real user would interact with the ap-
plication. The automated system developed in this project aims to overcome these
issues, as it requires no manual setup time and aims to behave more naturally by
learning human-like behaviour when interacting with the GUI.

Another issue with traditional scripts is the limited application to complicated
GUI interfaces, such as moving maps etc. Here, it may not be possible to pinpoint
the coordinates and type of elements in advance, as the content of the GUI is
highly dynamic. One study by Macchi et al. [35] developed a method that would
identify and check for the existence of elements on a GUI visually by using com-
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2 Background

puter vision algorithms and machine learning. Although this does improve the
flexibility and range of applications, it still suffers from the existing limitations of
scripted tests. Another similar study [59] also developed a technique to visually
identify and interact with GUI elements based on template matching. In light of
these limitations, the system developed in this project will pose the advantage that
it aims to learn dynamic interactions with the GUI, without relying on any prior
assumptions which enables the system to learn an adaptive exploration strategy.

A further group of techniques that fall under scripted tests are model-based
techniques. Here, a human tester first creates a model of the application views
and the transitions between the views that take the shape of a finite state machine.
From this finite state machine, test scripts are automatically generated. One study
[5] used finite state machines to generate test scripts specifically for web applica-
tions. This study however only focused on transitions between web pages and not
on dynamic interactions on a single web page. Another study [36] overcame this
limitation and focused on dynamic interactions within a single web page by also
relying on a model-based approach. Both studies suffer from the limitation that a
model needs to be set up manually, which is very time-consuming. Furthermore,
continuous updates to a web application also require ongoing manual updates of
the model which is very time-consuming and impractical for many applications.
As before, the proposed method will pose the benefit of not requiring the manual
definition of such models, thereby overcoming their associated limitations.

2.2.2 Record & Replay

Record and Replay is an alternative method of creating test scripts for GUI test-
ing that can be used as an improvement over manually scripted tests. Although
Capture-Replay-Tools have existed since the 1960s [8], they are still common prac-
tice in the industry and most state-of-the-art GUI test tools have a capture and
replay functionality.

In a sample run-through, a human tester would interact with the software
application’s GUI, performing actions such as clicking on buttons, inputting values,
and navigating through menus. These interactions would be recorded and saved
as a test plan, which can then be replayed at a later time to automatically test the
functionality of the application.

The main advantage of Record and Replay is that it is faster to define complex
and long interactions, as it eliminates the need to manually write test scripts. It
also doesn’t require a skilled human tester as oftentimes no scripting knowledge
is required [39] and the record & replay tools are simple and intuitive to use.
However, the technique may still suffer from the limited range and realism of the
scenarios that are tested. The problem with high maintenance costs and effort
also remains, as changes in a GUI may still require manual edits or entirely new
test recordings from a human tester. The adaptive and autonomous nature of the
proposed method aims to overcome these issues.
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2 Background

2.2.3 Regression Testing

Regression testing is a type of software testing that ensures that parts of software
remain working after changes have been made. It is typically done by re-running
existing test cases to ensure that they are passing after an update. If a test case
fails, this is called a regression.

Regression testing has also been adapted to test for visual differences in a GUI
after an update. One approach is to generate various screenshots of the GUI and
then use an algorithm to compare the screenshots to the previous version of the
software. This can help to identify visual differences between the two versions of
the software, such as changes in layout, colour, or font size. The advantage of
this approach is that it can reduce the amount of manual review required after an
update. Instead of having to manually review the entire GUI, only a much smaller
subset of screenshots or areas in the app require manual review by a human. This
can save a lot of time and cost, and help to ensure that any visual regressions are
caught and fixed early on. It is worth noting that GUI regression testing is not a
complete replacement for manual testing, but rather a complementary technique.
One company that offers this as a commercial service to test web applications is
BrowserStack, through their product Percy.io [26].

The algorithm required to check for differences in a GUI is not trivial, as a sim-
ple pixel-level difference will not work in cases where dynamic content is used,
such as changing images or text on news pages or social media networks. Here,
structural differences still need to be identified and literature exists that devel-
ops techniques to identify such structural changes. One study by Ivanova et al.
[29] developed an algorithm based on simple machine learning models. The pa-
per evaluated the K-means algorithm and the Mean-Shift algorithm to effectively
segment structural and layout components on a web page.

In summary, regression testing may reduce the amount of manual effort, how-
ever, the review of identified regressions remains a manual effort. With regard
to the proposed method in this project, regression testing may be a complemen-
tary, rather than an alternative method. The proposed method will be capable of
producing test cases that can afterwards be used to identify regressions.

2.3 Web Testing Frameworks

GUI testing frameworks are an essential tool for test automation, as they provide
many pre-built features and functionalities which are common to different types of
testing. One of the earlier GUI testing frameworks that have been used and devel-
oped in academia is the framework GUITAR [43]. It offers many different types of
testing and works across multiple platforms. Since then, more modern frameworks
have been developed and two frameworks that are specialised in browser-based
web app testing will be presented here. The first framework is the well-known
‘Selenium’ framework [13], which has over 170k users on GitHub and the sec-
ond framework is ‘Cypress’ [27], with well over 600k users. Both are open-source
frameworks that can be used for free.

Selenium is a widely-used open-source testing framework that enables the au-
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2 Background

tomation of web browsers across multiple platforms. It supports multiple pro-
gramming languages such as Java, Python, C#, Ruby, and JavaScript. Selenium
provides an API that enables interaction with different web browsers in a consis-
tent way.

Cypress is a newer open-source testing framework that is specifically designed
for testing web applications. It is built on top of JavaScript and provides a modern,
easy-to-use API for interacting with web browsers. Cypress provides many inter-
esting features and is particularly well suited for end-to-end testing, as it allows a
simple set-up of full end-to-end test suites.

It is important to note that the usage of Selenium is significantly more flexible,
as it doesn’t specialise in test automation but instead in the programmatic inter-
action with a web browser in general. Furthermore, while Cypress only supports
JavaScript, Selenium supports multiple programming languages to facilitate inter-
action with a web browser. Specifically, the integration with Python is attractive
as a range of powerful machine-learning libraries are available. It was decided
to choose the Selenium framework for the implementation of the systems in this
project.

WebDriver Interfaces

                   WebDriver Python Library

Custom Application

Google Chrome

https://webapp.com

Safari

https://webapp.com

Firefox

https://webapp.com

Microsoft Edge

https://webapp.com

Figure 2: Overview of the software stack that enables programmatic interaction
with a web browser. At the bottom, the web application is running in a given web
browser (i.e.: Chrome, Safari, Firefox, Edge) and their corresponding WebDriver
interfaces are sitting on top. These WebDriver interfaces are then accessed via the

user-friendly Selenium WebDriver Python library.

To understand how Selenium fits into the whole software stack, a brief overview
is provided: The World Wide Web Consortium specifies a standard WebDriver
[55] interface, which is typically implemented for all major web browsers. For
instance, the market-leading browser Google Chrome [51] offers the compatible
ChromeDriver [12] as the implemented WebDriver interface. The WebDriver in-
terface enables rich programmatic access to a web browser. Functionality such as
navigating to web apps, performing clicks, manipulating browser cookies or taking
screenshots is made available in a standardised, browser-independent interface.
The framework Selenium provides the ’Selenium WebDriver’, which exposes the

9



2 Background

WebDriver interface in the form of a user-friendly Python library.

2.4 Machine Learning

Machine Learning (ML) is a subset of artificial intelligence (AI) that provides sys-
tems with the ability to automatically learn, improve, and make decisions from
experience without being explicitly programmed to do so [46]. An important sub-
class of ML is supervised learning, where algorithms learn a potentially complex
relationship of inputs and outputs from labelled pairs of training data with the ob-
jective to afterwards predict outputs on previously unseen inputs. This approach
typically requires large volumes of labelled training data, which may not always be
readily available. Another algorithm sub-class of ML which overcomes this issue is
Reinforcement Learning (RL). In RL, an agent learns from the environment by in-
teracting with it and receiving rewards or penalties for the actions that it performs
[30]. Unlike supervised learning, this approach does not require large volumes of
labelled data sets.

The enabling technology that has driven the capabilities of ML methods are
Artificial Neural Networks (ANN) [57]. ANNs are computational models inspired
by the human brain’s interconnected neural structures. These networks are com-
posed of multiple interconnected artificial neurons or nodes, which are organised
into layers: an input layer to receive the data, one or more hidden layers for com-
putation, and an output layer for the final decision or prediction. Each artificial
neuron applies a weighted sum of inputs and a nonlinear transformation, allowing
the network to model nonlinear patterns in the data. The weights in the network
are learned through optimisation procedures, typically involving backpropagation
and gradient descent. In particular deep neural networks (DNNs), which are ANNs
with more than one, oftentimes many more hidden layers further boost the per-
formance and versatility of ML models [21].

x1

x2

x3

x4

x5

xn

input
layer hidden

layer
output
layer

y1

y2

yn

x1

x2

x3

xn...
. ...

. ...
.

...
.

∑

w1j
w2j
w3j

wnj

Sj Sj

 𝒇a

(a) (b)

Figure 3: Diagram depicting the structure of a simple ANN adapted from [9]. (a)
shows a simle ANN architecture, with one input layer, one hidden layer and one
output layer. (b) shows a single perceptron from the left architecture in detail,

where a weighted sum of inputs is passed through an activation function.
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2.4.1 Reinforcement Learning

RL is a domain within the broader field of ML that centres on an agent learning
to make optimal decisions through interactions with its environment [52]. In the
context of RL, an agent refers to the learner or decision-maker that interacts with
the environment, seeking to achieve a certain goal through its actions. On the
other hand, the environment refers to everything outside the agent with which it
interacts, providing the agent with feedback (rewards) and presenting new sit-
uations (states) in response to the agent’s actions. The RL problem is formalised
using a Markov Decision Process (MDP) [52]. MDPs formalise sequential decision-
making problems where actions influence not just immediate rewards, but also
future states and subsequent rewards. The MDP is best explained with the help of
Figure 4.

action
At

Agent

Environment

reward
Rt

state
St

Rt+1

St+1

Figure 4: The agent–environment interaction in a Markov decision process,
re-created from [52].

The state of the environment Sn as well as the associated reward is passed to
the Agent, which produces an action At based on the observed state [52]. This
action in turn modifies the state of the environment, which produces a new reward
Rt+1 and a new state St+1. The agent continuously uses the scalar-reward signal
R to update the parameters θ of its policy πθ, which is the strategy or rule that
determines the agent’s actions given the observed environment state. This policy
maps the observed state of the environment to actions that the agent should take in
a given state. As the agent continues to interact with the environment over time, it
iteratively refines this policy based on the reward signal R, with the ultimate goal
of maximising the sum of these rewards over time. In RL, interaction sequences
with the environment can be limited to a maximum length, known as the horizon
h, after which the environment is reset and a new interaction sequence is started.
The weighted sum of the rewards is known as the return, which is discounted such
that future rewards are given less weight over short-term, immediate rewards. It
is written as:

Gt =
∞∑

k=0

γkRt+k+1 (1)

where γ is an adjustable hyper-parameter, 0 < γ ≤ 1, called the discount rate.

The agent’s task, in the reinforcement learning paradigm, is to learn the opti-
mal policy π∗ that maximises the expected return G from each state, S, thereby
effectively solving the decision-making problem it’s faced with.
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2.4.2 RL Algorithms

There is a large number of different RL algorithms in existence, hence it is im-
portant to gather a high-level overview of this space. Figure 5 provides a loose
taxonomy of various state-of-the-art RL algorithms.

RL Algorithms

Model-Free RL Model-Based RL

Policy Optimisation Q-Learning Learn the Model Given the Model

Policy Gradient

A2C / A3C

PPO

TRPO

DDPG

TD3

SAC

DQN

C51

QR-DQN

HER

World Models

I2A

MBMF

MBVE

Alpha Zero

Figure 5: A loose taxonomy of RL algorithms re-created from [2].

The first important feature of RL algorithms is whether they are a model-based
or a model-free method. In brief, model-based algorithms are able to build up a
model of the environment, hence allowing them to plan ahead and predict the
next state and expected rewards, thereby increasing their sample efficiency [2].

Model-Free RL algorithms, on the other hand, do not assume any knowledge
of the environment or its model. As models are rarely available for real-life ap-
plications, model-free methods tend to be applied more frequently and are more
popular [2]. As the problem that is discussed in this thesis is incompatible with
model-based methods, the following will focus entirely on model-free methods.

Within the realm of model-free methods, one further sub-classification can be
made into Policy-Optimisation and Q-Learning methods [2]. In Policy-Optimisation,
the parameters θ of the policy πθ are directly optimised by gradient ascent or de-
scent through experiences that are collected by interacting with the environment
[2]. Q-learning-based methods on the other hand follow a different approach that
makes use of a value function. A value function estimates the expected return of
a policy for a given state, given that the agent will proceed to forever act accord-
ing to its policy. The objective here is to find the optimal action-value function,
Q∗(s, a), which yields the value of action a for an environment state s given that
the agent will continue to act under the optimal policy π∗. It is apparent that the
policy is not directly optimised and is only implicitly defined by the relationship:

a(s) = argmax
a

Qθ(s, a), (2)

which states that the action a for a given policy, parameterised by θ is the one
which leads to the maximum subsequent return for the current state s. With this
background, it is now possible to understand a concrete algorithm variant.
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Soft Actor-Critic (SAC) [23] is an advanced RL algorithm that falls between
policy optimisation and Q-learning methods. It uses a stochastic policy and a
separate target value network to improve stability. SAC employs a Gaussian distri-
bution for action selection and applies a squashing function to ensure the actions
remain within bounds. It uses entropy maximisation to stabilise training, which is
particularly beneficial for complex tasks where hyperparameter tuning is challeng-
ing. SAC is known for its robust performance across various tasks, outperforming
both existing on-policy and off-policy methods in many challenging scenarios. All
these properties make SAC an attractive choice for this project. The implemen-
tation intricacies of the SAC algorithm are covered in the later sections of this
report.

2.4.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as the default model for
extracting insights from data with grid-like topology, such as images [21]. Rather
than directly feeding raw pixel values into an ANN, the CNN helps to translate
the image to a rich feature-oriented representation that captures the significant
aspects of the image.
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Figure 6: Convolutional operation of 3× 3 kernel applied to a 7× 7 input [1]

The functioning of a CNN is rooted in a mathematical procedure known as a
convolution. An image, shown as a square matrix where each entry matches a
pixel’s brightness, is combined with a filter to produce a new output matrix. The
filter, also referred to as a kernel, is a small square matrix comprising learned
weights. By sliding this kernel across the image and taking a weighted sum at
each step, the convolution is obtained. The mathematical operations are visualised
in Figure 6. A bias term is added and the result is passed through an activation
function such as ReLU (Rectified Linear Unit), which produces the final output that
is passed to the subsequent network layers. After multiple convolutional layers,
the final output of the CNN is a feature map of a more manageable dimension,
which captures the meaningful information included in the original input image.
This feature map is flattened from a 2D matrix to a 1D vector and then passed into
the fully-connected ANN.

Besides the size of the kernel, another parameter to consider is the stride,
which is the offset that is applied when sliding the kernel across the input. Ad-
ditionally, many CNNs rely on pooling layers for downsampling, however as the
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simple architecture in this project does not include this operation, its discussion
will be omitted.

In the context of this thesis, the ability to effectively extract relevant features
from image inputs is particularly useful as screenshot images will be used to rep-
resent the state of the GUI. In this setting, CNNs will be an effective method to
extract features from these screenshots that allow the RL agent to learn more effi-
ciently.

2.5 Reinforcement Learning and GUI Testing

The usefulness of RL methods in the context of GUI testing has been previously
demonstrated by a range of studies. This section will provide a brief overview of
the literature that has applied RL methods to GUI testing.

A common theme across the literature is the application of RL techniques,
specifically Q-learning, in the automated testing of Android mobile applications.
Autodroid [3] is a proposed method for automated GUI testing of Android applica-
tions using Q-learning, where an RL agent interacts with the application through
trial and error to identify actions that are likely to discover unexplored states and
revisit partially explored states. This method achieved higher average code cover-
age across eight Android applications compared to random test generation. Sim-
ilarly, another paper presented QDroid [54], an automated GUI testing tool for
Android applications that uses a Deep Q-Network and semantic analysis of the
GUI. The tool identifies the semantic meanings of GUI elements and uses them as
input to a neural network. This network, through training, approximates the be-
havioural model of the application under test. The tool aims to generate test cases
that test hard-to-reach states of the application, cover the most code possible, and
reveal faults, all within a limited amount of time. A similar study proposed the
method DinoDroid [60], which used Deep Q-Learning to find interactions which
would lead to unexplored and/or partially explored states. Likewise, this study
also claimed improvements over random exploration. Another study [37] also
achieved good GUI exploration, again using Q-learning. Yet another paper [47]
also developed a Q-learning method to generate GUI interactions and managed to
achieve an average code coverage of >80% after only 500 steps of training.

It is obvious that most research that applied RL methods to explore user in-
terfaces utilised a Q-learning approach. Despite the success of these methods,
Q-learning approaches face certain drawbacks. The first difficulty is the require-
ment to ‘hand-pick’ a discrete set of features to represent the observation space.
This makes these methods difficult to generalise between different types of appli-
cations, such as between Android and Web Apps. Using screenshots, as done in
this project overcomes this difficulty and resembles the observation as the visual
information on the screen, similar to human perception.

Furthermore, the Q-learning approaches outlined here all utilised a discrete
action presentation, meaning that in any given GUI state, the agent was asked
to choose one action from a fixed range of allowed actions. The difficulty here
arises, as the number of allowed actions may differ between states, which makes
it difficult to find a universally suitable action space representation that works
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across GUI states and across applications. Additionally, GUI interactions extend be-
yond only clicks on elements [14] and modern GUIs often use more sophisticated
user interactions, such as scrolling, swiping, dragging or long-clicking/holding.
Such interactions tend to be better represented with a continuous-valued action
space, as they require action parameters. For example, an agent that is capable of
mimicking an interaction such as swiping will not only need to predict the action
"swipe" but will also need to predict the associated action parameters in the form
of "swipe from point A to point B at speed V". Therefore, continuous action spaces
offer more potential to model such complex actions.

The prior literature considering continuous action spaces in GUI testing is lim-
ited. One relevant paper titled "Automating GUI Testing with Image-Based Deep
Reinforcement Learning" [18] presented a novel approach to GUI testing using
image-based deep reinforcement learning (DRL). The authors propose a method
that utilises an RL algorithm (A3C), where the observation is an RGB screenshot
image of the current view of the GUI. The method predicts a continuous probabil-
ity distribution for the predicted click coordinate in a continuous space. Pairing
this continuous distribution with the element boundaries and the policy output
values, the clicked element was predicted. Additionally, the approach utilised a
CNN for efficiently extracting features from the image and used an LSTM to keep
a memory of previously visited states. The method outperformed Q-learning-based
and Random approaches by a large margin. Despite the good performance, the
agent training took multiple days on a GPU, before it could be deployed on a
real-world product and the source code was not publicised.

Table 1 provides an overview of the discussed methods with their key charac-
teristics. Similarly to [18], the proposed method will also rely on a CNN, contin-
uous actions and address web apps, however, the proposed method innovates on
various architectural choices, including the reward signal and choice of RL algo-
rithm among others.
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Adamo et al. [3] Q Table 1/x ✓ ✓ ✓
Vuong et al. [54] DQN ∆ Elements ✓ ✓ ✓
Zhao et al. [60] DQN Code Coverage ✓ ✓ ✓
Degott et al. [14] MAB Visual Change ✓ ✓ ✓
Saber et al. [47] DQN 1/x ✓ ✓ ✓
Eskonen et al. [18] A3C/CNN URLs Visited ✓ ✓ ✓
(Proposed method) SAC/CNN ∆ New Elements ✓ ✓ ✓

Table 1: Summary of properties of related studies that are using RL methods for
automated GUI testing. Abbreviations: Deep Q Networks (DQN), Multi-Armed

Bandit (MAB), Reward inverse to number of times a state was visited 1/x,
Change in (∆), Application Under Test (AUT).
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3 Requirements

This section outlines the high-level requirements of the deliverables that are pro-
duced in this project. The requirements will be broken down for the individual
subsystems and will set the goals for the subsequent implementation section.

The high-level goal of this project is to produce a fully autonomous testing
system for web applications. The objective of the system is to find interaction se-
quences within a given web application which induce faults, specifically JavaScript
Exceptions. The output of the system are the discovered faults and the interaction
sequences that provoked them in the form of a test report. This test report will be
returned to the web app developers for investigation and fixing.

Interaction Learning
(RL Model Training)

Interaction Sequence
Generation

(RL Model Inference)

JavaScript
Exception DetectorModel

Parameters
GUI

States

Web
App

URL

Optional
Preamble
Sequence

Errors and
causing
interaction
sequences

Exploration Algorithm

...

...

...

Fault Detector

Autonomous Testing System

Figure 7: High-level overview of the testing system showing system inputs and
outputs as well as internal sub-components.

The testing system requirements can be broken down further into individual
components. Figure 7 gives a high-level overview of the testing system includ-
ing its sub-systems. There are two major subsystems: The first subsystem is the
exploration algorithm, responsible for learning and then simulating user-like in-
teractions with the GUI. The second subsystem is the fault detector, which will
take the unique GUI states that were discovered through the interactions as input
and potentially detect an array of faults. It can be seen that this is a full end-to-end
system, which only requires the URL where the web application can be accessed
and outputs faults that are present as the output, without requiring any human
efforts in between.

3.1 Exploration Algorithm

The Exploration Algorithm is a fundamental component of the autonomous test-
ing system, with its function being the discovery of as many unique states within
the GUI as possible. This requirement ensures broad coverage of the web appli-
cation, thus increasing the probability of uncovering interaction points that may
conceal potential faults. The development of this exploration algorithm will be
the research focus of this project. The following functionality is required for the
successful delivery of an exploration algorithm:

• Development of an interface to the web application under test, which would
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need to provide a compatible interface for the RL agent to observe and ma-
nipulate the GUI state.

• Development of an RL agent capable of autonomously learning through
interaction with the GUI, thereby generating parameters (including policy
weights and biases) that can be repurposed at inference time.

• Implementation of a GUI interaction sequence generator that utilises the
previously obtained parameters to generate extensive interaction sequences
with the GUI. Generating interaction sequences should not require re-training
and allow continuous testing of the system.

There are a range of desirable characteristics for the RL exploration algorithm:

• Fast and sample-efficient training of the algorithm: This implies that the RL
agent should be trained using minimal learning interactions in the least pos-
sible time, thereby reducing both the computational and temporal resource
footprints required for setting up the testing system. This will broaden the
accessibility of the system, catering to a wider user base while making the
system more user-friendly.

• The developed method should be as versatile as possible and be applicable
across different applications without entailing any assumptions or depen-
dencies that limit its application to a certain type of web application. This
characteristic will also promote the generalisability of the developed meth-
ods in this project.

3.2 Fault Detector

The Fault Detector forms the second major subsystem of the autonomous testing
system. Its purpose is to identify faults that may be present in any of the states
that are visited by the exploration algorithm. Initially, the Fault Detector should be
configured to detect and handle JavaScript Exceptions, a prevalent class of faults
in web applications. However, the design of the Fault Detector must allow easy
extensibility to allow future inclusions of more diverse fault detection types.

The simplicity of the Fault Detector does not diminish its importance. As the
component that identifies faults instigated by the Exploration Algorithm’s inter-
actions, it plays a pivotal role in realising the final deliverable of this system: a
comprehensive report of discovered faults and the specific interaction sequences
that led to them. This output would provide invaluable insights to web application
developers, enabling them to pinpoint potential problems in their applications, re-
produce them, and ultimately rectify them.
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4 Analysis and Design

This section delves into the analytical and design phases involved in creating the
autonomous testing system, providing insight into the design decisions, such as
important design trade-offs. The system is broken down into multiple layers, with
each layer representing a group of related functional modules. Figure 8 visualises
the different layers and the constituent sub-modules with arrows indicating the
information flow at a high level.
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Figure 8: Detailed system design overview showing the different layers and the
major sub-components therein. Arrows give an intuition about the flow of

information.

The following subsections will discuss the design of each of the layers individ-
ually, starting from the bottom and working up to the highest layer. First, the web
application and the browser interface, as well as the custom higher-level abstract
interface will be described. The gymnasium environment, which builds on top of
these interfaces will subsequently be introduced. Finally, a high-level introduction
to the design process of the RL algorithm layer is provided. Acquiring a compre-
hensive understanding of the system architecture and appreciating the associated
design choices will establish a solid foundation for the upcoming implementation
section, which will illuminate the technical implementation nuances in detail.
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4.1 Web Application

As can be seen in Figure 8, the web application (web app) is the lowest-level
constituent of the system overview provided in this chapter. Although the design
of the web app is not the purpose of this project, it is valuable to have a high-
level understanding of the architecture of a modern web app before designing a
testing system for it. Web apps are characterised by offering a more dynamic and
interactive experience to the user, compared to traditional websites.

The frontend, also known as the client side, is the user-facing component of the
web app responsible for rendering the GUI and managing user interactions. Built
using technologies like HTML, CSS, and JavaScript, the front end processes certain
user inputs directly, providing real-time visual updates to enable a responsive user
experience. Form validations and dynamic visual updates and animations typically
occur directly in the frontend. Such interactions can happen without requiring a
full reload of the web page, allowing for more responsiveness without the need to
wait for network requests.

The backend, also known as server-side, operates behind the scenes, handling
vital and sensitive calculations or functionalities to maintain application integrity.
It’s responsible for server-side logic, database interactions, complex calculations,
and application rule enforcement which cannot be left to the client side. Com-
munication between the frontend and backend typically takes place through REST
API calls, typically transferring data in JSON or XML formats.

Figure 9: Example screenshots of the Cypress Real World App [25].

In order to evaluate the effectiveness of the autonomous testing system, the
Cypress Real-World App (RWA) [25] serves as a suitable benchmark. This open-
source dummy web app, licensed under the MIT license, emulates a modern pay-
ment application similar to online banking web apps like Venmo. Screenshots of
the GUI and highlighted GUI elements can be seen in Figure 9. The RWA is a full-
stack web app, embodying both frontend and backend components described pre-
viously. The frontend provides a rich user interface, featuring sophisticated com-
ponents such as a date-picker and a user authentication system, enabling users
to sign up for accounts, log in, and interact with the application. The backend
complements the frontend by executing server-side operations, allowing users to
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perform complex tasks such as adding a bank account, sending, and receiving
money between friends. This holistic application structure encapsulates various
real-world functionalities, making the RWA an excellent candidate for algorithm
evaluations. Its open-source nature permits reproducibility, facilitating future re-
search with comparative performance analysis.

4.2 Web Browser Interface

The WebBrowser interface, designed to interact with the web app, utilises Web-
Driver interfaces via the Selenium WebDriver Python library. A detailed introduc-
tion of WebDrivers has been provided in the Background section on Web Testing
Frameworks. In summary, a WebDriver, specified by the W3C and implemented
by all major web browsers, allows rich programmatic access to a web browser’s
functionalities. The Selenium WebDriver Python Library provides a user-friendly
Python interface for this purpose.

In the context of this project, the Google Chrome browser has been chosen,
utilising the corresponding ChromeDriver [12] for the WebDriver interface. This
selection is based on the popularity of the browser and reliable WebDriver support.

4.3 High-Level Web App Interface

The High-Level Web App Interface serves as an abstraction layer for the Selenium
WebDriver Python library, wrapping various functionality into more user-friendly
and syntax-efficient operations. Its primary responsibilities encompass setting up
the browser environment and orchestrating several sub-components:

• The ‘Action Performer’ module simplifies the interaction with the web appli-
cation, offering high-level interactions, such as clicks or mouse movements,
by wrapping WebDriver methods.

• The ‘Screen Capturer’ module streamlines screenshot acquisition, simplifying
the visualisation process. The ‘Video Recorder’ combines the screenshots
taken by the ‘Screen Capturer’ to create videos, optionally visualising and
painting user interactions such as clicks on specific screen locations in the
video recording. This feature enhances the traceability of the testing and
debugging process, providing an intuitive overview of the actions performed.

• The ‘Web Element Grabber’ efficiently retrieves all web elements present on
the webpage. The ‘Dead end Handler’ monitors the state of the web ap-
plication, identifying and handling irreversible states such as being logged
out. If the application enters a dead end state, it returns the application to a
functional state, ensuring the testing process can continue.

• The ‘Preamble Injector’ provides users with the flexibility to define specific
steps to be executed upon launching the web app, such as creating a new
user account and logging into the web application, as in the case of the RWA.
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This functionality allows for tailored and controlled starting conditions for
each testing process.

• Lastly, the ‘Error Listener’ vigilantly keeps track of any JavaScript errors that
occur during the test, recording them for later inclusion in the test report.

Collectively, these functionalities form a robust and reusable interface that sim-
plifies the interaction with the web application beyond the WebDriver interface,
streamlining the operations of all the system’s upper layers.

4.4 Gymnasium Environment

The Gymnasium Environment layer of the system architecture implements the
standard Gymnasium API [19] (formerly OpenAI Gym [10]), which forms a strate-
gic design decision for this project. Gymnasium is a Python library providing a
standard interface between RL algorithms and various environments. It offers a
flexible, standardised API that enables easy development and comparison of RL al-
gorithms. Essentially, Gymnasium abstracts the complexities of the environments,
enabling the developers to focus on crafting and refining the RL algorithms.

The most significant advantage of implementing a Gymnasium interface is the
plug-and-play compatibility with a wide array of open-source RL algorithm imple-
mentations and libraries. Moreover, by adhering to this standard interface, one
can leverage pre-implemented wrappers that facilitate reward and observation
pre-processing, along with environment vectorisation. Vectorisation enables run-
ning multiple environments in parallel, which is a common approach to speeding
up training in RL.

A Gymnasium environment contains two fundamental properties: the observa-
tion space and the action space. The observation space is a mathematical model
that defines what an environment observation looks like, typically being either a
set of discrete entities or a tensor of continuous real numbers. The same applies to
action spaces, where the action space defines the mathematical representation of
an action applied in the environment. This project defines the observation space
as an image, more specifically an RGB colour screenshot downscaled to a size of
128× 128. This type of observation is represented by a tensor ORGB ∈ R128×128×3.
Alternatively, OGRAY ∈ R128×128×1 is also used and indicates a grayscale image of
the same size.

The logical components of a Gymnasium environment can be broken down
into the following:

• ‘Environment Observer’: This module captures a screenshot image from the
high-level web app interface, applies pre-processing (like grayscale conver-
sion or image resizing), and transforms it to the appropriate data type for
the Gymnasium API.

• ‘Action Processor’: Given an action within the specified action space, this
module scales and post-processes the predicted action from the raw action
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space representation to a usable action that is executed on the web app in-
terface.

• ‘Reward Calculation’: Arguably the most important component, it gener-
ates a reward as a real-numbered scalar, guiding the RL algorithm. Positive
rewards promote behaviour, while negative rewards discourage it. Zero re-
wards are neutral, indicating neither promotion nor discouragement. The
choice of reward function may require knowledge of elements present on
the webpage and can utilise information from the ‘Web Element Grabber’
component for this purpose. In addition, knowledge of whether the agent
has provoked a dead end state may also be valuable, making it also reliant
on the ‘Dead end Handler’ for this purpose.

Overall, the Gymnasium Environment serves as a structured and efficient way
to link the high-level web app interface with RL algorithms, promoting an isolated
and hence effective RL algorithm development process.

4.5 RL Algorithm

The RL Algorithm Layer implements the ‘intelligent’ aspect of the autonomous
testing system. It involves training an RL algorithm to produce the algorithm’s
optimal parameters (weights and biases), a process that typically demands sub-
stantial computational effort and training time. However, once determined, these
parameters can be reused and fully characterise the agent’s behaviour. After train-
ing, the inference is almost instant, as small networks, like the ones used in this
project, are computationally lightweight.

In the RL Algorithm Layer, a CNN serves as the Feature Extractor. CNNs are
chosen due to their ability to efficiently learn from the high-dimensional, grid-
like data that screenshots represent. The CNN takes the processed screenshot
images as input and transforms these into a set of abstract features that summarise
the state of the GUI. A simple architecture is preferred here to maintain sample-
efficient training, as the acquisition of data in the form of experiences with the
environment is computationally expensive.

Following the feature extraction, the features are fed into a DNN Policy. The
DNN Policy acts as a function approximator, taking the high-level features and
predicting the next action, which the RL agent should take. The DNN is composed
of multiple fully connected layers and, like the CNN, is typically kept shallow to
allow for training with limited data.

The Algorithm Trainer is a central component that uses the feature represen-
tation from the CNN and the DNN Policy’s predictions to adjust the parameters of
these networks. It does this based on the reward signal it receives from the RL En-
vironment (Gymnasium). Through iterative optimisation, the Algorithm Trainer
adjusts the weights and biases of the CNN and DNN to maximise the expected
cumulative reward.

Lastly, the Algorithm Executor acts during the inference phase. It employs the
optimal weights computed during the training phase and executes an RL inference
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loop, allowing the RL agent to interact autonomously with the GUI. The Algorithm
Executor pays particular attention to any JavaScript errors that occur during this
exploration and maintains a screen recording of all actions leading up to detected
faults. These outputs are invaluable test artefacts that aid developers in debugging
and rectifying any faults identified. As inference of the relatively small network
architecture is very fast, the algorithm executor is suitable for integration into con-
tinuous deployment pipelines, offering the potential for ongoing and continuous
test automation.

One fundamental design decision in this project was the implementation ap-
proach of the RL agents. The two considered options are discussed below:

(Option 1) Implement an RL algorithm from scratch: The advantage of this
approach lies in the flexibility it offers. A custom implementation allows for
easy adaptation, modification, and extension to cater to specific needs with-
out requiring knowledge of potentially complex libraries. It also provides full
control over implementation details and decreases third-party dependency,
thereby mitigating risks associated with bugs in existing implementations.
However, this option has its drawbacks: it is error-prone, demands a strong
grasp of complex mathematical optimisation, and the notoriously complex
nature of RL algorithms makes debugging and verification difficult. The sig-
nificant effort of developing an RL algorithm from scratch would likely mean
remaining confined to one working implementation within the scope of this
project.

(Option 2) Use existing implementations for the RL algorithm: This option
eases experimentation with different algorithms as many implementations
already exist. It also provides access to standardised algorithms with estab-
lished performance benchmarks that can be replicated. Using existing im-
plementations avails much functionality, including vectorised environments
and utilities for experiment management and hyperparameter tuning. Ad-
ditionally, existing user bases and communities can offer support to address
known issues. However, customisation of these algorithms may require a
deep understanding of potentially convoluted codebases, and certain modi-
fications may necessitate a considerable amount of boilerplate code. Design
decisions made by these libraries, such as system compatibility (i.e. for GPU
accelerated training), can also be challenging to resolve.

Several libraries were evaluated and analysed for implementing the RL Al-
gorithm Layer, including CleanRL [24], Ray RLLib [32], and Stable Baselines 3
[45]. CleanRL offers single-file algorithm implementation for simplicity and ex-
tendibility but lacks functionality, such as vectorised environments, limiting train-
ing speed. Ray RLLib is a robust library with numerous algorithm implementa-
tions, however, it has poor and partly outdated documentation, is difficult to ex-
tend, and during the initial analysis of the library, multiple bugs were encountered.
The library is targeted for large-scale production systems potentially deployed in
the cloud rather than smaller-scale research use. The third library, Stable Baselines
3, provides straightforward, well-documented Python implementations of various
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algorithms, supports vectorised environments, and facilitates convenient local ex-
periment tracking with Tensorboard. Despite requiring a moderate amount of
boilerplate code to extend existing implementations, it serves as a user-friendly
choice for research, albeit lacking implementations of RNN/LSTM wrappers for
existing algorithms.

In the end, Stable Baselines 3 was selected as the library of choice for im-
plementing the RL Algorithm Layer. Its user-friendly documentation, support for
vectorised environments, convenient local experiment tracking, and straightfor-
ward Python implementations of various algorithms aligned best with the scope
and goals of this project. The necessary extension was manageable despite re-
quiring a moderate amount of boilerplate code. Although it currently lacks imple-
mentations of RNN/LSTM wrappers for existing algorithms, its advantages greatly
outweighed its shortcomings, making it a practical and well-suited solution for
this research-oriented project.
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5 Implementation

5.1 RL Algorithm

This section outlines all the implementation details relating to the RL algorithm
layer. The first section outlines implementation details for the SAC algorithm,
which is the chosen algorithm for this project. Afterwards, details regarding
the implementation of the policy will be discussed. Subsequently, the concept
of frame-stacking is described. To compare the method’s performance, baseline
implementations are discussed and finally, the test executor, which forms the de-
ployed test system will be described.

5.1.1 Soft Actor-Critic (SAC) Implementation

The SAC algorithm, as detailed in the paper by Haarnoja et al. [23], is a founded
choice for the RL algorithm implementation in this project. Firstly, SAC is based
on the maximum entropy reinforcement learning framework, which encourages
the exploration of the action space by maximising entropy. This is particularly
beneficial for the automatic GUI exploration agent, as it ensures a varied explo-
ration of the web app under test. Secondly, SAC training is particularly stable and
the algorithm is comparably insensitive to hyperparameters, making it robust and
well-suited for real-world applications. Other algorithms often have a very nar-
row window of effective hyper-parameters where training is possible, while SAC
training remains intact for a very wide range of hyperparameters. Finally, SAC is
designed to be sample-efficient, achieving excellent results in fewer training time
steps compared to other algorithms. This is particularly advantageous in situations
where data acquisition is computationally expensive or time-consuming, as it is in
the case of this project with the relatively slow web browser environment.

In summary, the SAC algorithm is made up of the following components:

1. Replay Buffer (D): Being an off-policy algorithm, SAC can learn from past
‘recycled’ experiences. To do this, the replay buffer is used as a store of previ-
ous experiences with the environment. Each experience is a tuple (s, a, r, s′, d),
where s is the current state, a is the action taken, r is the reward received,
s′ is the next state, and d is a boolean flag indicating whether s′ is a terminal
state. The replay buffer allows the algorithm to learn from past experiences,
which improves sample efficiency and stability.

2. Target Functions: SAC uses two target functions, which are used to com-
pute the target values for the Q-function updates. These target functions are
based on the current policy and the current Q-functions.

3. Q-functions: In line with this, SAC uses Q-functions to estimate the ex-
pected return of taking a particular action in a given state. The use of two
Q-functions is a technique borrowed from Double Q-Learning, and it helps
to mitigate the overestimation bias that can occur in Q-Learning. To prevent
overestimation, the more conservative (lower) Q-value estimate of the two
is picked at each instance.
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4. Policy: The policy in SAC is a stochastic policy that outputs a probability dis-
tribution over actions. The policy is updated to maximise a trade-off between
expected return and entropy, a measure of randomness. This encourages the
policy to maintain a balance between exploration (choosing random actions)
and exploitation (choosing the best-estimated action).

Algorithm 1 Soft Actor-Critic (SAC) Training

1: Input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer D
2: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3: repeat
4: Observe state s and select action a ∼ πθ(·|s)
5: Execute a in the environment
6: Observe the next state s′, reward r, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay buffer D
8: If s′ is terminal, reset environment state.
9: if it’s time to update then

10: for j in range (however many updates) do
11: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
12: Compute targets for the Q functions:

y (r, s′, d) = r + γ(1− d)

(
min
i=1,2

Qϕtarg,i
(s′, ã′)− α log πθ (ã

′ | s′)
)
, ã′ ∼ πθ (· | s′)

13: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕi(s, a)− y(r, s′, d))
2

for i = 1, 2

14: Update policy by one step of gradient ascent using:

∇θ
1

|B|
∑

s∈B

(
min
i=1,2

Qϕi
(s, ãθ(s))− α log πθ(ãθ(s)|s)

)
,

where ãθ(s) is a sample from πθ(·|s) which is differentiable wrt θ via the reparameteri-
sation trick

15: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

16: end for
17: end if
18: until convergence

1
Figure 10: Pseudo-Code of SAC Algorithm training re-created from [2]

The interplay between the aforementioned components is orchestrated through
the actor-critic architecture. The ‘actor’ in this context refers to the policy, which
is responsible for deciding which action to take in a given state. The ‘critic’, on
the other hand, refers to the Q-functions, which evaluate the quality of the actions
taken by the actor. The critic guides the actor’s learning process by providing
feedback on its decisions. An overview of the training algorithm of SAC, which is
seen in Figure 10 will be provided in the following.

The SAC algorithm starts by initialising the policy parameters θ, the Q-function
parameters ϕ1, ϕ2, and an empty replay buffer D (line 1). The parameters for the
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target Q-functions, ϕtarg,1 and ϕtarg,2, are then set to match the main Q-function
parameters (line 2). The algorithm then enters a loop, which continues until
convergence. In each iteration, the agent observes the current state s and selects
an action a based on the policy πθ(·|s) (line 4). This action is executed in the
environment, leading to a new state s′, a reward r, and a signal d indicating
whether s′ is a terminal state (lines 5-6). The tuple (s, a, r, s′, d) is then stored in
the replay buffer D (line 7), and if s′ is a terminal state, the environment is reset
(line 8).

The policy and Q-function parameters are then updated if the conditions for
doing so are met (line 9). This update process involves several steps, which are
repeated for a specified number of updates (line 10). Firstly, a batch of transition
tuples is sampled from the replay buffer (line 11). The target values for the Q-
function updates are then computed based on these transitions (line 12). These
target values are used to update the Q-functions (line 13) and the policy (line 14)
using gradient descent and ascent, respectively. The target Q-function parameters
are then updated to slowly track the main Q-function parameters (line 15). This
iterative process continues until the parameters have converged, at which point
the trained policy can be used to select actions in the environment.

The logarithmic terms present in the policy update step (line 14) and in the
computation of target values for Q-functions (line 12) form the entropy regulari-
sation of the policy. This entropy regularisation encourages high exploration of the
action space. The entropy coefficient parameter α weighs the importance of the
entropy term against the expected return in both the policy and Q-functions up-
date processes. The modern implementation of SAC used for this project includes
an algorithm to automatically adjust the entropy coefficient for optimal results
throughout training.

The mathematically sophisticated optimisation procedure discussed here high-
lights the difficulty of implementing this algorithm from scratch. Therefore, for
the implementation of this project, the implementation provided in Stable Base-
lines 3 (stable_baselines3.sac.SAC) [45] is relied upon. Stable Baselines 3 also
provides tuned hyperparameters for different environments. The closest related
problem is the Atari [40] environments, which also use image-based CNN poli-
cies of screens, somewhat related to the GUI screenshots discussed here. For that
reason, the Atari hyperparameters are used as the starting point for this project.

5.1.2 Policy Implementation

While the previous section discussed the optimisation algorithm and mathematical
framework of SAC, this section will outline the implementation of the policy that
SAC is optimising. The policy network architecture is depicted in Figure 11.

The inputs to the policy are the preprocessed screenshots obtained from the
environment. The exact preprocessing operations occur before reaching the policy
within the environment. The only preprocessing step happening here is image nor-
malisation, where pixel values originally ranging between 0 and 255 are adjusted
to fall between 0 and 1.
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Figure 11: Policy Network Architecture with the 128× 128 stack of image inputs
on the left and action distribution parameter output on the right. CNN Feature
extractors produce 1× 512 feature space and subsequent fully connected layers

produce the final prediction.

The structure of the policy can be separated into two main components: a CNN
that serves as the feature extractor, and a fully connected DNN that produces the
outputs based on the derived features. The CNN architecture used as the feature
extractor aligns with the default architecture in Stable Baselines 3 [45]. This
architecture, which was originally employed in the work by [40], has proven to
be successful in the related RL problem domain of visually interacting with Atari
Games. The exact layer architecture is given in Table 2.

Layer Type Filters Kernel Size Stride Activation

Conv2D 32 8 4 ReLU
Conv2D 64 4 2 ReLU
Conv2D 64 3 1 ReLU
Flatten - - - -

Table 2: CNN Architecture for Feature Extractor as proposed by [40]. The exact
layer dimensions depend on chosen image size and number of stacked frames n

and are dynamically determined at runtime.

The output of the CNN, a flattened feature vector with a dimension of 1 ×
512, is then fed into the ANN. The ANN consists of two fully connected layers
of size 256 × 256. The ultimate output of the ANN, and hence the policy, is a
tensor of dimension 1× 4. This tensor corresponds to the parameters of the action
distribution — specifically, the mean and standard deviation of a 2-dimensional
squashed Gaussian distribution. This distribution serves as a stochastic policy,
providing the action selection mechanism of the SAC algorithm with a balance
between exploration and exploitation.

To get a better intuition of how the parameters predicted by the policy relate
to the real-world actions in the form of mouse clicks within the web applications,
an explanation and visualisation are provided. The parameters that are output by
the policy are not converted into actions directly. Instead, the action parameters
parameterise a 2D Squashed Gaussian distribution and are the mean and standard
deviation of this distribution. The action is then obtained by sampling from this
distribution. This is known as a stochastic policy, and it allows for on-policy ex-
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ploration, meaning that when receiving a given observation, the action will not
always be the same, as it is randomly sampled from the distribution, which allows
for exploration.

Figure 12: Visualisation of a stochastic policy as training progresses. Initially,
actions are sampled from a uniform distribution (high exploration) and

progressively the standard deviation of the Gaussian decreases (high
exploitation).

Figure 12 shows a visualisation of this 2D distribution. The Y and X axes are
the raw unscaled click coordinates and the Probability axis measures the likelihood
of selecting a certain action for a given location. Initially, the policy will employ
uniform sampling to pre-load the replay buffer, which means that all click coor-
dinates are equally likely to be chosen (pure exploration). Over time, the policy
will begin to learn a policy and produce an action distribution with a given mean
and a high standard deviation (centre image). The agent will progressively learn
a more effective policy and the standard deviation will likely decrease to exploit
the learned policy (right image). Interestingly, this stochasticity does not break
the optimisation procedure, as the ‘reparameterisation trick’ is made use of, which
still allows the stochastic policy to be differentiated, which is a requirement for
backpropagation.

5.1.3 Frame-Stacking

Frame-stacking is a technique commonly employed in RL tasks, particularly those
where the state representation is an image, as it is in the problem domain consid-
ered in this project. The core idea behind frame-stacking is that instead of feeding
the RL agent just a single image (or ‘frame’) as the current state observation, mul-
tiple consecutive frames are stacked together and provided as input. This stacking
operation is typically done along the channel dimension, so for RGB images, a
stack of four frames would have a shape of H ×W × (C ×n), where H and W are
the height and width of the image, C is the number of channels in each image (3
for RGB, 1 for grayscale), and n is the number of stacked frames. Frame-stacking
is advantageous as it allows the agent to perceive dynamic behaviour in the form
of a recent history of observed states within the environment. This is particu-
larly relevant when exploring a web app, where the previous actions are likely
to influence the subsequent actions in the exploration sequence. The concept of

29



5 Implementation

frame-stacking was notably employed by [40] in their pioneering work on training
RL agents to play Atari games.

In this project, frame-stacking is implemented using an environment wrapper.
This wrapper intercepts the interactions between the RL agent and the environ-
ment, and takes care of stacking the frames before they are passed to the agent.
The number of stacked frames, denoted as n, is a hyperparameter of the system,
and it can be tuned to meet the balance of capturing a sufficient history of states
to facilitate sophisticated GUI interactions, while at the same time not including
an excessive number of frames that increase training difficulty. The choice of n is
subject of an ablation study, described in the following sections.

One important aspect to note is that Stable Baselines 3, the library used for
implementing the SAC algorithm in this project, does not have out-of-the-box sup-
port for Long Short-Term Memory (LSTM) architectures for SAC. LSTMs are a type
of recurrent neural network that can inherently handle sequential data, like a se-
ries of images, by maintaining a form of internal ‘memory’. Incorporating LSTM
layers into the policy network could be another way to provide the agent with
a sense of temporal context, similar to what frame-stacking accomplishes. The
method developed by Eskonen et al. [18] relied on an LSTM to capture sequential
information. As integrating LSTMs would require considerable modification to the
Stable Baselines 3 library, it was avoided in this project and frame-stacking was
utilised instead to serve as a simpler, yet effective, alternative to using LSTMs.

5.1.4 Baseline Implementations

In order to evaluate the effectiveness of the RL-based GUI testing developed in this
project, three baseline methods are implemented. These existing methods for GUI
testing enable a relative performance comparison. The three baseline methods
selected are random testing, Q-Learning, and a human baseline.

Algorithm 4 Random Baseline Algorithm

1: Input: Web Application
2: Initialise newElementsDiscovered to 0
3: Initialise i to 0
4: while i < 20 do
5: Draw a sample (x, y) from a 2D-uniform distribution representing the action space
6: Perform the click at (x, y)
7: Get the number of newly discovered elements, store as newElements
8: Add newElements to newElementsDiscovered
9: Increment i by 1

10: end while
11: Output: Return newElementsDiscovered

1
Figure 13: Pseudo-Code showing the implementation for the ‘Random’ Baseline.

Random: One common approach to automated GUI exploration is random test-
ing [56]. The literature frequently refers to this class of testing also as ‘monkey-
testing’. To establish a baseline for random testing that can be used to evaluate
the automated testing system, a compatible baseline implementation is created.
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In summary, the algorithm for Random testing, presented in Figure 13 contin-
uously clicks at a randomly sampled point on the user interface, potentially hitting
clickable elements and triggering GUI interactions while doing so.

Algorithm 5 Tabular Q-Learning Algorithm

1: Input: Web Application
2: Initialise elementsDiscovered = 0
3: Initialise i to 0
4: while i < 20 do
5: actions ← getAvailableActions()
6: for all a in actions do
7: if a has never been executed before then
8: setQV alue(a, 500)
9: end if

10: end for
11: A ← get the action with maximum Q value from actions
12: Perform action A, i.e. click at x,y
13: elementsDiscovered += number of new elements discovered
14: newEvents ← getAvailableActions()
15: γ ← 0.9× e−0.1×(len(actions)−1)

16: reward ← 1/(number of times action A was executed)
17: maxV alue ← get the maximum Q value of newEvents
18: q ← reward+ γ ×maxV alue
19: setQV alue(A, q)
20: Increment i by 1
21: end while
22: Output: Return elementsDiscovered

1
Figure 14: Pseudo-Code showing the implementation for the ‘Tabular

Q-Learning’ Baseline adapted from [3].

Q-Learning: The second baseline that will be implemented is the Q-Learning ap-
proach, as proposed by [3]. This algorithm uses a Q-Table as the policy. Although
other more sophisticated Q-learning approaches with DNN policies exist, they are
not directly applicable to web apps, without making further assumptions, as they
targeted Android Applications and used state representations that are not directly
transferable to web apps.

The algorithm presented in Figure 14 is explained in brief: All the possible
actions (i.e. clickable elements) are retrieved from the current web page and all
the actions that have not been executed before receive an initial Q value of 500.
Then, the action with the maximum Q value is selected and performed, which
triggers a transition to a new state. In the new state, again all possible actions are
obtained. The Q value of the executed action is calculated as the current reward
and the future reward, where the current reward is inversely proportional to the
times the action has been executed and the future reward is proportional to the
maximum Q values in the state that is transitioned to. This ensures that areas in
the web application that are unexplored are likely to be explored next, due to the
high initial Q-value of 500.

One important thing to note about this baseline is that, unlike other baselines,
it relies on a function that retrieves clickable elements on the web page. In this
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application, which is specific to web applications, these actions are defined as ei-
ther buttons, links, or any elements that have a JavaScript click EventListener
attached to it, indicating that the element provokes some kind of JavaScript exe-
cution.

Human Tester: To reliably facilitate the baseline experiments with human testers,
a system was implemented, which would retrieve the current screenshot from the
web application, display it to a human user and allow the user to click at any de-
sired location while following the objective to explore as many unique states and
elements of the web app GUI as possible. After the human tester has inputted a
fixed-length sequence of clicks, the experiment ends automatically and records the
cumulative number of unique elements discovered throughout the trial.

In summary, the technical details regarding the baseline experiments have been
discussed. The precise experimental setup will be discussed in the following ‘Ex-
perimental Setup’ chapter, followed by the results in the subsequent section.

5.1.5 Test Executor

The Test Executor is the final package that is integrated into the testing process for
the GUI application. Its purpose is to apply the learned policy parameters—namely
the network weights and biases acquired during training—and effectively interact
with the web app using the trained agent. The goal of the Test Executor is to mon-
itor and log any JavaScript errors that occur during the GUI interactions. Once
the test run is complete, the Executor generates test artefacts. These include a
detailed log file with all the encountered JavaScript errors, and a video record-
ing of the entire interaction process showing the click locations of the agent. In
case the executor encounters any GUI faults, the produced test artefacts allow the
developers to easily investigate and reproduce the error and pinpoint the cause.

Algorithm 2 Automatic GUI Test Algorithm

1: Input: Optimal policy weights θ, number of steps t
2: Initialise empty error log L
3: Begin screen recording and write video to R
4: for i less than t do
5: Observe state s from the environment
6: Predict action a = πθ(s)
7: If any new errors occur, add them to log L
8: end for
9: Stop screen recording R

10: Output: Return artefacts R,L

1
Figure 15: GUI System Test Pseudo-Code (Inference Time).

Figure 15 provides the simplified pseudo-code of how the test executor per-
forms a test run. The Stable Baselines 3 library provides methods to automat-
ically save and load a policy. This implementation specifically uses the method
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stable_baselines3.sac.SAC.load() to simply read in the previously stored weights
from a zip file. In summary, all that is needed to deploy a trained agent is a
lightweight zip file with the weights and the Test Executor script, which allows
developers to flexibly integrate this automated testing procedure into their devel-
opment and testing setups. The tests can then be continuously executed in cloud
CD pipelines or even in the local development setup, as the model inference can
run on most common consumer hardware without requiring intensive computa-
tional resources.

5.2 Gymnasium Environment

To briefly recap, the purpose of the Gymnasium Environment layer is to create
a standardised abstract representation of the environment, which is compatible
with available RL algorithm implementations. The functionality that this layer
implements can be grouped into three different modules, which are the Environ-
ment Observer, Action Processor and Reward Calculator. Collaboratively, these
modules handle environmental observations, action executions, and reward feed-
back mechanisms. In the following, the important implementation details will be
outlined.

5.2.1 Observations and Actions

The Gymnasium Environment is characterised by two fundamental properties,
namely the action space and the observation space. These properties form the
essential interface for the RL agent, dictating what it can observe from the envi-
ronment and how it can interact with it.

Observations For the implementation of the observation space, the
gymnasium.spaces.Box class was utilised. This class allows the construction of
multi-dimensional boxes, and it is particularly useful for defining observation
spaces that are sets of continuous real numbers. For this project, the observation
space is defined as an image, specifically a screenshot of the web app interface,
downscaled to a specified size.

This observation space is implemented as follows:

1 spaces .Box(low =0, high =255 , shape =( downscale_height ,
downscale_width , n_img_channels ), dtype=np.uint8)

In this implementation, low and high are the lowest and highest possible
pixel values, respectively, which are set to 0 and 255 as typical for a standard
8-bit RGB image. The shape parameter is a tuple specifying the dimensions of
the observation space. The dimensions downscale_height and downscale_width
represent the height and width of the downscaled screenshot, respectively, and
n_img_channels represents the number of channels in the image (3 for RGB, 1
for grayscale). The dtype parameter is set to np.uint8 which is the typical data
type for images, representing 8-bit unsigned integer arrays. The downscale size,
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as well as the colour mode, can both be adjusted in the config files. The image
downscale size is set to 128 × 128, as it was the smallest possible size that would
still allow small, yet important details in the GUI to remain visible.

Resize

(Grayscale)

Figure 16: The observation pre-processing from the screenshot (left) to the
observation space. Grayscaling optionally occurs if it has been enabled in the

configuration.

Starting with the capture of a screenshot in the form of a PIL.Image (Python
Pillow), the observation formation process, illustrated in Figure 16, involves sev-
eral steps. The captured screenshot is downsized to the determined downscaling
size using Bicubic interpolation. If enabled in the configuration, a colour space
conversion transforms the RGB image into grayscale, through the following oper-
ations:

[
I
]
=

[
0.2989 0.5870 0.1140

]T ·
[
R G B

]
(3)

These weights reflect the human eye’s relative perception of luminance for each
colour according to the ITU-R BT.601 standard [28]. Notably, image normalisation
occurs separately outside of the environment prior to the CNN feature extractor.

Actions The action space is the second fundamental property of the Gymnasium
Environment. The action space is defined as a two-dimensional continuous space
where each dimension falls in the range between -1 and 1. The scaling of the ac-
tion value between -1 and 1 is a standard RL convention that most continuous ac-
tion space algorithms follow. Again, the class gymnasium.spaces.Box is utilised to
implement this action space as it allows for the construction of continuous spaces:

1 spaces .Box(low=-1, high =1, shape =(2 ,) , dtype=np. float32 )

The low and high parameters define the range of the action space. Each action
dimension corresponds to an action that the agent can perform in the web app’s
GUI. The shape parameter indicates that there are two dimensions in the action
space. The data type np.float32 is used to denote that the actions are continuous
values.

The first dimension relates to the x-coordinate of a mouse click, and the sec-
ond dimension to the y-coordinate. However, the actions in the action space first
need to be converted to actual screen pixel coordinates. This is because the RL al-
gorithms operate in the normalised action space, while the GUI interface requires
absolute pixel positions for interactions. Hence, a post-processing step is included,
which scales the normalised actions into screen coordinates as follows:
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1 x = int (( x_norm *0.5+0.5) * viewport_width )
2 y = int (( y_norm *0.5+0.5) * viewport_height )

Here, x_norm and y_norm are the normalised x and y coordinates, respectively.
These values are first scaled from the range [-1, 1] to [0, 1], then multiplied by the
viewport’s width and height. The continuous floating point values are then discre-
tised by casting them into an integer. Finally, the resulting x and y coordinates are
then passed to the GUI interaction functions.

5.2.2 Reward Calculation

The reward function in RL has a profound influence on the training process, and
ultimately on the success of the agent. Given the overarching goal of the RL agent
to effectively explore the GUI and uncover potential faults, it is crucial to devise a
reward mechanism that accurately and beneficially encapsulates this objective.

One direct approach could be to simply design a reward function that incen-
tivises the agent to maximise the number of faults discovered. However, such an
approach is fraught with challenges. Firstly, the rewards would be sparsely dis-
tributed in the action space as bugs in an application are typically infrequent [17].
Sparse rewards make training difficult as the agent doesn’t receive informative
feedback for most of its actions. Secondly, such a scheme would be highly depen-
dent on the specifics of what is classified as a ‘bug’, making it hard to generalise
across different applications.

A more effective approach is to incentivise the agent to explore the user inter-
face efficiently, under the assumption that effective exploration will likely uncover
bugs. As there is not one right solution to an effective reward function, three
possible implementations have been designed and implemented to allow for an
empirical evaluation later on. In addition to the three reward ‘Variants’ outlined
in the following, details describing two ‘Add-Ons’ are provided, which are optional
post-processing steps applicable to each of the variants. The three reward imple-
mentations are outlined in the following:

Variant 1: Visual Differences This method assumes that actions causing signif-
icant state changes in the GUI will induce substantial visual differences. The re-
ward is calculated based on the pixel-level difference between consecutive screen-
shots. A non-productive click, such as on an empty area, would not cause any
changes to the GUI, resulting in a reward of zero. Conversely, a click that causes
dynamic changes in the GUI will yield visibly differing screenshots, and hence a
larger reward. The implementation is shown in 1.
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1 def visual_reward ( previous_observation , observation ):
2

3 # Calculate the absolute difference between the frames
4 diff = np.abs( prev_obs - obs)
5

6 # Sum up all differences
7 diff_sum = np.sum(diff)
8

9 # Return the reward
10 return diff_sum

Listing 1: Reward function to compute the visual reward given the current and
previous observations. Adapted for improved readability.

Variant 2: Change in Elements The second method is similar to the visual ap-
proach but relies on the changes in HTML elements of the GUI, instead of visual
differences. The principle here is that new or different elements appearing or dis-
appearing from the GUI are an indicator of dynamic GUI changes and exploratory
behaviour. Such changes are quantified by comparing the sets of HTML elements
before and after an action. The reward calculation code for this method is as fol-
lows:

1 def element_delta_reward ():
2

3 # Get the set of currently visible elements
4 current_elements = set( get_visible_paths ())
5

6 # Length of set difference of prev. and current elements
7 element_delta = len( current_elements - prev_elements )
8

9 # Update the previous elements
10 prev_elements = current_elements
11

12 # Return the reward
13 return element_delta

Listing 2: Reward function to compute the reward as the change in elements
between two states. Adapted for improved readability.

This method compares the current visible HTML elements with those from the
previous state. The set difference, denoted by delta, is the number of elements
that appeared or disappeared as a result of the latest action.

Variant 3: New Elements Discovery The final reward implementation is de-
signed based on the premise of incentivising the discovery of new, previously un-
seen HTML elements in the GUI. It is similar to the ‘Change in Elements’ method
but focuses on novel discoveries rather than changes. The assumption is that dis-
covering new elements indicates further exploration of the application and hence
potentially uncovers more faults.

The reward in this method is calculated based on the number of new HTML
elements that become visible as a result of the agent’s action. These elements are
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identified by comparing the current set of visible elements with a running set of
known elements, stored in known_elements. If an element is not in the known set,
it is considered new and the agent receives a reward. The number of new elements
found forms the basis of the reward. The code for this method is presented in the
following.

1 def new_unseen_element_reward ():
2

3 # Get the set of currently visible elements
4 all_visible_elements = set( get_visible_paths ())
5

6 # Get the new elements that haven 't been seen previously ,
7 # which is the following set difference
8 new_unseen_elements = all_visible_elements - known_elements
9

10 # Add the new elements to the set of known elements
11 known_elements = known_elements .union( new_unseen_elements )
12

13 # Get the number of previously unseen elements
14 n_new_elements = len( new_unseen_elements )
15

16 # Return the reward
17 return reward

Listing 3: Reward function to compute the reward as the number of newly
discovered previously unseen elements. Adapted for improved readability.

This implementation first gets the current set of visible elements and identi-
fies the new ones by comparing them to known_elements. The newly discovered
elements are appended to the known_elements, which prevents all elements that
have previously been found to contribute to future rewards. This implementation
operates under the hypothesis that it nurtures an incentive within the agent to
discover and interact with previously unseen elements and regions of the graph-
ical user interface. In doing so, it strategically avoids the agent from falling into
a pattern of executing familiar actions, which, while they may cause large state
changes within the environment, don’t contribute to novel exploration. Hence, it
mitigates the formation of possible high-reward loops, where the agent is unduly
rewarded for repeated behaviour, detracting from the broader goal of thorough
application exploration.

All three implementations will later be evaluated empirically. After the best-
performing implementation has been selected, two further reward post-processing
strategies will be investigated to further improve upon the implementations. The
implementation details of these further ‘add-ons’ are described in the following:

Add-On 1: Logarithmic Reward Scaling Logarithmic reward scaling is an ad-
ditional mechanism used to smooth the magnitude of the rewards provided to the
agent. By applying the x = ln(x + 1) operation to the raw reward, the spread
between very large positive rewards and small positive rewards is reduced. As
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certain state transitions are associated with very large changes, these would be
disproportionally reinforced. For example, some clicks may lead to the discovery
of long lists of elements, which would produce unreasonably high rewards, mak-
ing clicks that only provoke small changes, such as clicking a like button, diminish
in importance. It is therefore hypothesised that applying logs incentivises a more
balanced exploration by the RL agent.

Add-On 2: Negative Rewards Negative rewards are another auxiliary strategy
used to shape the agent’s behaviour more explicitly. In particular, negative re-
wards are used to discourage certain actions. For instance, if an action does not
lead to the discovery of new states in the GUI (i.e., the reward is 0), a small neg-
ative reward could be given instead. This discourages the agent from performing
ineffective actions, thereby encouraging the minimisation of ‘wasted’ clicks. Fur-
thermore, actions that lead to a dead end state in the GUI, from which no further
exploration is possible, could be met with a larger negative reward. This discour-
ages the agent from pursuing actions that limit its potential for further exploration.
This is the second universal ’add-on’ that will be tested.

5.2.3 Gymnasium API

To the RL algorithm interacting with the environment, all that is visible is the ab-
stracted gymnasium API that the algorithms use to interact with the environment.
A custom Gymnasium environment is created by inheriting from the Gymnasium.Env
class and overriding its methods to achieve custom functionality. The Gymnasium
API has got two mandatory properties that are set in the class constructor, which
are observation_space and action_space, as previously discussed. In addition
to the constructor, there exist three methods that need to be implemented by a
custom Gymnasium environment, which are reset(), step() and close().

Return Values

observation

reward

terminated

truncated

info

«API method»
Gymnasium.Env.step()

Call Arguments

action

«API method»
Gymnasium.Env.reset()

Return Values

observation

info

Figure 17: Important Gymnasium API Methods with call arguments and return
values.

The reset() method is called at the beginning of each episode, setting the
environment to an initial state and providing the agent with the first observation.
This method is crucial as it prepares the environment for a new episode after the
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previous one has terminated. In this case, the starting state of the web app (home
page) is restored and all the data structures relevant for the reward calculations,
such as the set of known elements, are reset to their initial states. As seen in Figure
17, the reset method does not require any call arguments and it returns the initial
observation and an optional ‘info’ value to pass additional information, which is
not used for this implementation.

The step() method is where the main interaction with the environment occurs.
This method accepts an action as input and performs this action in the environ-
ment, updating its internal state accordingly. It then returns the next observation
that the agent perceives following the action, along with the reward for the action,
a boolean flag indicating whether the episode has terminated, another boolean
flag indicating whether the episode was truncated and again an info object, which
is not used. In this implementation, an episode can terminate for either of two
reasons. The first reason is termination due to reaching the maximum configured
horizon, which is set to 20 steps. The value of 20 steps is configurable and was
found to be a realistic number of actions to sufficiently explore smaller web apps.
The second reason for termination is reaching an invalid ‘dead end’ state, which
typically is the agent inadvertently leaving the web application to another website
by following an external link or by logging out of the user account. Both of these
dead end states make further exploration impossible leading to a direct termina-
tion of the episode. In the case of the second reason, the ‘truncated’ boolean flag
will be set accordingly.

Lastly, the close() method is responsible for freeing any resources used by the
environment. This method ensures that the browser application is properly closed
and is usually called when the RL training or evaluation is completely finished.

reset()start step() yes

no

episode
terminated?

yes

no

training
finished? close() end

Figure 18: Typical flow-chart of interactions with a Gymnasium Environment.

These outlined methods are typically called in a standard sequence, depicted
in Figure 18: Initially, the reset() method is called to set the initial state, in
this case the home page view of the web app. Following action predictions from
the agent, the step() method is called in a loop until the episode is terminated.
Another outer loop resets the environment and starts a new episode until training
is finished. Once training is finished, the environment is closed by calling the
close() method and the flow ends.

In conclusion, the Gymnasium API facilitates the creation of an abstract layer
that helps to simplify the complex web browsing environment for RL algorithms.
By inheriting from the Gymnasium.Env class and appropriately defining the
observation_space, action_space, reset(), step(), and close() members, a
bridge between the intricate workings of a web application in a browser and the
abstract mathematical models used in reinforcement learning was constructed.
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5.3 Web App Interface

5.3.1 Screenshots and Recordings

The Web App Interface provides a critical link between the RL agent and the web
application it is designed to interact with. A central aspect of this interface lies in
the capture of screenshots and video recordings of the web application.

Screenshots Capturing screenshots of the web app forms a fundamental feature
required for the operation of our system. These screenshots provide the obser-
vations for the RL agent, serving as the basis upon which the agent determines
the actions it needs to execute. Furthermore, these screenshots are invaluable for
debugging the system, as they offer visual snapshots of the application’s state at
various points during the interaction.

Typically, the browser operates in a headless mode, where no actual browser
window is rendered. In this context, screenshots serve as the only visual repre-
sentation of the application’s current state. The implementation of the method
WebAppInterface.get_screenshot() resembles these lines of code:

1 def get_screenshot ():
2 # Get the screenshot as a bytes object
3 screenshot_bytes = webdriver . get_screenshot_as_png ()
4 # Convert the screenshot to a PIL image
5 image = Image.open( BytesIO ( screenshot_bytes ))
6 return image

Listing 4: High-Level function to get a screenshot of the current browser
window. Adapted for easier readibility.

Video Recordings In addition to screenshots, video screen recordings form an-
other useful feature of the Web App Interface. Unlike screenshots, Selenium Web-
Driver does not inherently support screen recording, necessitating a custom im-
plementation.

The recording functionality was developed from scratch and operates on a sep-
arate parallel thread. This thread continuously captures screenshots at a frequency
of 30 frames per second (FPS). The individual frames, along with their respective
recording timestamps, are stored in a buffer.

Once the screen recording is stopped, a video is constructed by compiling these
frames using the Python OpenCV library. To enhance the interpretability of these
videos, the screen recorder supports interaction overlays on the video, which are
painted on top of the recorded frames and provide a visualisation of the interaction
inputs to the GUI. For instance, mouse clicks are visualised as a red dot on the
video. A selection of video frames with interactions is shown in Figure 19.
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Figure 19: Selection of video recording frames with click interactions painted
(red dots).

5.3.2 Action Interfaces

While the previously described screenshot interface is used to obtain observations,
the action interface described in the following enables the agent to interact with
the environment. Although interfaces for multiple action types, including mouse
moves, clicks, and swipes, only clicks were actually used in the end. The action
interfaces wrap the low-level WebDriver methods and expose a high-level easy-to-
use interface. In the following, the implementation of the click interface is given:

1 def click(x, y):
2 # Clips the coordinates so they are within the browser window
3 x,y = _clip_coordinates (x, y)
4 # Moves the mouse pointer to the coordinates
5 _move_mouse (x, y)
6 # Records the timestamp of the mouse click
7 t = time.time ()
8 # Performs the click in the web browser ( Selenium )
9 ActionChains ( webdriver ).click (). perform ()

10 # Creates a new MouseClick object and
11 # appends it to the action history
12 action_history . append ( MouseClick (t, x, y))

Listing 5: High-Level function for a click action, which wraps a sequence of
lower-level Selenium calls. Adapted for easier readibility.

As can be seen from the code snippet, there are several steps involved when
performing a simple mouse click, which are all abstracted away and wrapped in a
simple click(x,y) method call. In summary, the implementation first ensures that
the provided click coordinates are within the browser window and clips them to
confine them into the valid range. The mouse pointer is then moved to the spec-
ified click location, through a call to another custom move_mouse(x,y) method.
The time of the action is recorded and the click is performed, after which a new
custom MouseClick object is created and appended to the action history. This ac-
tion history is used by the video recorder to visualise the interactions on the screen
recording.

5.3.3 Preambles and Dead Ends

The necessity to put the web app into a desired starting state for testing, as well
as the ability to recover from inadvertently entering a dead end in the exploration
process, have been discussed previously. As both dead ends and preambles are
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effectively custom action sequences, their implementation is very similar. The
key difference is the point at which these interaction sequences are triggered:
Preambles are injected during the construction of the WebDriverInterface class
as soon as the web app is opened in the browser for the first time. Dead ends,
on the other hand, are handled whenever a dead end state is encountered at any
given time step. The implementation of additional custom preambles and dead
end definitions is straightforward and allows the test system to be set up with
little effort.

One noteworthy implementation detail is that the dead end handler returns a
value, which indicates whether a dead end has been discovered or not. This allows
for the early termination of the episode and can inform the reward function to
allow for the penalisation of actions that provoke dead ends.

In the case of the Cypress Real World App (RWA), the preamble creates a new
user account, by navigating to the sign-up page and filling in the sign-up form.
After the user is created, it is logged in to the web application, which directs the
web app to the home screen that presents the starting point of the exploration.
For the RWA, a dead end is defined as either any URL that is outside the web app,
reached by accidentally clicking a link that points to an external website, or the
login window, indicating that the user has been logged out. In both cases, the web
page home page is restored.

5.3.4 Error Listener

The Error Listener implements the fault detection capability of the testing system.
It operates by retrieving all logs from the JavaScript Browser Console during the
testing process. These logs, typically comprising errors, warnings, and informa-
tional messages generated during the execution of JavaScript code in the browser,
provide valuable insights into potentially undesired behaviour during the auto-
matic GUI testing procedure. At the end of the test run, the logs are written to a
log file and are part of the test artefacts. Each entry in the log file comprises the
severity level, the error message itself, and the timestamp at which the error oc-
curred. This information can assist developers in diagnosing and resolving faults
that the testing process uncovers.

The webdriver.get_log("browser") obtains the JavaScript console logs and
returns a list of all log lines that have occurred during the browser session. The
Error Listener then iterates through this list, writing each entry to the log file.
Each log file entry provides information on the severity level, the actual log or
error message, and the timestamp at which the error occurred. The severity level
can vary and include ‘DEBUG‘, ‘INFO‘, ‘WARNING‘, or ‘SEVERE‘, each dictating
the seriousness of the log entry. This helps in quickly identifying critical issues
(‘SEVERE‘) that require immediate attention.

5.3.5 Element Grabber

The reward calculations (Variant 2&3) used in this project rely on the functional-
ity that is implemented by the ‘Element Grabber’ described in this section. More
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specifically, two key requirements need to be met by this component. The first re-
quirement, used by Reward Variant 2 is the determination of change in elements
between two consecutive states. To determine this, the count of unique visible
elements needs to be available. The second requirement, used by Variant 3 is the
extraction of new, previously unseen elements, which requires unique identifica-
tion of elements across different states.

Elements on a web page, defined by their HTML tags do not always have an
inherent unique ID associated with them. This makes identifying the same element
across different web pages difficult. Although the Selenium WebDriver does offer
a method to get all visible elements from the current web page and attaches a
unique identifier to these elements, this identifier is not preserved across state
transitions, making the re-identification of the same element on different web
pages impossible.

For that reason, a custom method was developed that allowed for the unique
re-identification of elements across different web pages and states. The developed
method employs some heuristics, as there exists no foolproof method to attach
unique identifiers to elements. The developed method relies on xpaths, which
is essentially the path of all the parent elements in the XML-like structure of an
HTML web page. The identification of elements is performed by the following
algorithm:

Algorithm 3 Get identifiers of visible elements

1: Input: Web Page
2: Get a list of all elements in the web page and store as allElements
3: Initialise empty list visibleXPaths
4: for all e in allElements do
5: Check whether e is visible
6: if e is visible then
7: Compute the XPath identifier xpath of e
8: Add xpath to visibleXPaths
9: end if

10: end for
11: Output: Return visibleXPaths

1
Figure 20: Pseudo-Code of how unique identifiers are obtained of all visible

elements on a web page.

In summary, the algorithm presented in Figure 20 first gets all the elements
from the HTML document of the web app, checks which of these elements are
currently visible and finally computes the ids in the form of xpaths of these visible
elements, which is the returned list. To better explain what xpaths are, and how
they are used to compute an element ID, the following example is provided.
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1 <html >
2 <body >
3 <h1>List Example </h1>
4 <ul>
5 <li>Item 1</li>
6 <li>Item 2</li>
7 <li>Item 3</li>
8 </ul >
9 </body >

10 </html}
11

Example HTML Document

⇓
1 /html
2 /html/body
3 /html/body/h1
4 /html/body/ul
5 /html/body/ul/li [1]
6 /html/body/ul/li [2]
7 /html/body/ul/li [3]
8

Associated XPath IDs

Figure 21: Simple example of translating elements from an HTML document into
unique XPath IDs.

As can be seen on the example provided in Figure 21, unique identifiers can be
obtained by building the xpaths of all the elements. If there are multiple elements
with the same xpath, as is the case with the list in the example, the index of the
trailing element is simply appended, which allows sibling elements to be correctly
treated as separate, distinct elements. This concludes the procedure for obtaining
the element ids.

Next to the element id generation, there is a second core functionality that the
algorithm in Figure 20 relies upon. This is the determination of wether a given
element is visible. At any given time, there may be numerous HTML elements
present in an HTML document, which are not actually visible. These elements
must be excluded. Again, there is no straightforward property that states whether
a given element is visible. Instead, each element is checked for a range of CSS
(styling) properties, which are:

• Opacity: The opacity property determines the transparency of an element. If
the opacity value is set to 0, the element is fully transparent and not visible.
If the opacity value is greater than 0, the element is considered visible.

• Visibility: The visibility property determines whether an element is visible
or hidden. If the visibility value is set to "hidden" or "collapse", the element is
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not visible. If the visibility value is set to "visible", the element is considered
visible.

• Height and Width: The height and width properties determine the size of
an element. If either the height or width value is set to 0 or not specified,
the element is considered not visible. If both the height and width values are
greater than 0, the element is considered visible.

• Location: The location of the element is determined and it is checked whether
the coordinates are within the viewport. If the element indicates that the el-
ement is outside the viewport, it is considered invisible.

Only if all four of the above checks succeed is an element determined as being
visible.

One interesting detail regarding the implementation is that it does not rely
on Selenium WebDriver API methods, as some checks are cumbersome, slow or
simply impossible to do using Selenium. Instead, custom JavaScript code is in-
jected into the web application, using webdriver.execute_script(). The injected
JavaScript code performs all the operations outlined in this section natively in the
browser’s JavaScript runtime and only returns the visible element ids back to the
Python script. Selenium does however provide this functionality of injecting cus-
tom JavaScript code at runtime.

5.4 Performance: Increasing Training Throughput

The speed at which experiences from the web browser environment can be col-
lected is a critical factor in making this RL system practical. Without a high-
throughput environment, the training process can become prohibitively slow. While
not a separate component in its own right, the need for efficient training directed
the design and implementation of various components in the system. Contrary to
many machine learning systems where the optimisation procedure is the primary
bottleneck, the central constraints in this context were the computationally heavy
browser environments. Notably, the entire development process was conducted
on a laptop, specifically an Apple MacBook Pro with an M1 Max 10-core CPU,
32GB of RAM, and an integrated GPU. This setup constituted a significant system
constraint, necessitating various performance optimisations. The motivation for
making the system more efficient, over simply using a more powerful machine
is that it would allow the final system to be similarly trained and deployed on a
regular web developer’s computer without requiring powerful and expensive extra
hardware.

Browser RAM Accumulation In the training process, around 10 concurrent
threads were typically employed, each running an instance of the Google Chrome
Browser. At startup, each browser instance required approximately 300MB of
memory, aggregating to a total of about 3GB of RAM for the 10 concurrent browsers.
However, over time, this memory consumption would increase linearly as session
information accumulates in the browser, reaching up to 3GB per browser after a
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few hundred thousand interactions and causing the total consumption to peak at
> 30GB for the ten web browsers alone. This level of memory use would exceed
the available RAM, causing the system to utilise slower swap memory (hard disk),
thereby significantly reducing training throughput.

To alleviate this issue, a browser-restart mechanism was introduced, wherein
each web browser would be re-launched after a given number of steps. This ap-
proach effectively cleared all accumulated memory in the browser, resetting it back
to its initial lightweight state. Given the hardware used, re-launch intervals of ap-
proximately 1000 steps proved optimal, allowing the 10 training environments to
run indefinitely at a high speed without exceeding the available RAM.

Replay Buffer Accumulation The Soft Actor-Critic (SAC) algorithm used for the
training process retains past experiences in a replay buffer. However, this replay
buffer, which includes the observation framestacks, can accumulate a significant
amount of memory after long training runs. In its initial implementation, the
memory consumption of the Python script grew to more than 30GB after a few
hundred thousand training steps, which again slowed down the training in the
later stages.

This challenge was addressed by limiting the length of the replay buffer to
100k entries, thereby discarding older experiences. This strategy not only helped
manage memory consumption but also contributed positively to training perfor-
mance by removing outdated, low-reward experiences from the initial stages of
training.

Native JavaScript During the implementation process, it was observed that cer-
tain functions implemented via the Selenium APIs were inefficient, significantly
slowing down training. For instance, obtaining all elements from a webpage and
invoking the isDisplayed() method on each element blocked execution at each
time step for several seconds, which significantly slowed down training.

To overcome this bottleneck, the same functionality was implemented directly
in JavaScript and executed within the web browser. This increase in efficiency
was not necessarily because JavaScript is faster than Python, but because the data
transfer between Python/Selenium and the browser posed a bottleneck. This is-
sue was addressed by minimising back-and-forth calls between Python and the
browser, allowing entire computations to be performed directly in JavaScript and
only returning the final results once at the end. Compared to the previous meth-
ods, this approach substantially improved the speed of execution, increasing train-
ing throughput by a factor of 5.

In conclusion, the outlined optimisations were indispensable to the successful
development and execution of the testing system. Without these performance en-
hancements, the computationally intense browser environments would have ren-
dered the development and training process practically infeasible. Ultimately, the
described optimisations yielded a highly efficient web browser environment, capa-
ble of generating experiences and simultaneously training at a rate of 10 samples
per second. Consequently, extended training runs of 500,000 time steps can be ex-
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ecuted on a laptop within a single day. This efficiency not only makes the methods
developed here accessible to a broader range of users, including web developers
who may not typically have access to powerful hardware but also offers significant
cost savings for deployment in cloud environments.

5.5 Configuration Options

This section briefly outlines the implemented strategy of how the system can be
configured. As the various components in the testing system (Web Browser Inter-
face, Gymnasium Environment, RL Algorithm, Test Executor) all have configurable
parameters that affect their behaviour, it is important to allow users of the system
to configure the system without making changes to the code.

To achieve this, a comprehensive configuration file was created, which sup-
plied all the components with the required configuration options automatically.
This was done by loading the configuration file, creating a configuration object
that included all the options and then passing this object through to all compo-
nents. The configuration file uses the .yaml format, which is a popular choice for
configuration files. As there are >50 configurable system parameters, an overview
of the most important configuration parameters together with an explanation and
suggested values can be found in Appendix: Configuration Options.

One important feature of the configuration system is that at every experiment
run, a copy of the config.yaml file is created and saved together with the ex-
periment artefacts. This allows for organised tracking of hyper-parameters and
permits a reproduction of the experiment run using the exact system state at a
later time.
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6 Experimental Setup

This section outlines the testing methodology and experimental setup for the sys-
tem developed in this project. First, an ablation study is performed to examine
the impact of different key components that form part of the system. These com-
ponents include frame stacking, image preprocessing, the CNN feature extractor,
and the reward function. Afterwards, a generalisation study is performed, which
tests the transferability of the proposed methods to different web apps. Finally,
experiments with baseline implementations are performed.

6.1 Research Questions

The experiments are guided by the following research questions:

RQ1: How does the CNN feature extractor influence performance?

RQ2: How does frame stacking influence performance?

RQ3: How do image pre-processing techniques affect performance?

RQ4: How do different options for reward functions affect performance?

RQ5: How well does the system generalise to different web apps?

RQ6: To what extent can trained models be transferred across web apps?

RQ7: How does this system compare to a random approach?

RQ8: How does this system compare to a Q-learning approach?

RQ9: How does this system compare to human testers?

6.2 Ablation Study

The ablation study performed in the following will always modify a singular com-
ponent on the base architecture. Unless subject to ablation or explicitly stated, all
of the following experiments use the configuration summarised in 3:

Component Parameter / Configuration

Frame Stacking stack size 4, as used in [40]
Horizon length 20
Downscaling Size 128 x 128
Reward Function Variant 3 with log-scaling, negative default=-0.01
Algorithm SAC: learning rate=0.0003, gamma=0.99, replay buffer size=100k
Policy Type CNN Policy from [40]
Web Application Under Test Cypress Real World App

Table 3: Ablation baseline configuration, which shows the parameters and
configuration of the key components.
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All experiments in the ablation study will train the agent for 100,000 time
steps. Although this is insufficient to reach convergence of the episodic reward, it
was found that it is long enough to demonstrate the agent’s long-term ability to
learn.

6.2.1 CNN Feature Extractor

The proposed system uses a CNN to learn and extract features from the input im-
age. To justify the necessity of this component and answer RQ1, the CNN feature
extractor undergoes ablation. To do this, the CNN feature extractor from the ab-
lation baseline in Table 3 is removed and replaced by a simple flattening layer,
which flattens the input image into a column vector. This flattened layer serves as
the input to the subsequent DNN policy.

6.2.2 Frame Stacking

A history of the n most recent frames is used as the input to the RL agent. To
answer RQ2, again an ablation experiment is performed where frame stacking is
deliberately omitted. To do this, instead of providing a stack of frames only the
single most recent observation is used as the input.

The stack height n used in the ablation baseline (Table 3) was used, as it
worked well in previous studies [40]. To validate this choice, a series of exper-
iments are run, where the parameter n is modified.

In summary, the following values are tested: n = [1, 2, 3, 4, 5, 10], noting that
n = 1 means that no frame stacking is performed and n = 4 is the default value in
the ablation baseline.

6.2.3 Image Preprocessing

Another potentially influential component of the system is the preprocessing stage
that is applied to the screenshot images before they are inputted into the CNN.
The ablation baseline (Table 3) performs a grayscaling operation, which is hy-
pothesised to improve training efficiency by reducing the complexity of the input
by discarding colour information.

To verify this hypothesis and answer RQ3, this preprocessing step is ablated
and an experiment is run where instead the frame stack of grayscale images is
replaced by a frame stack with the RGB image screenshots.

6.2.4 Reward Function

The reward function is a decisive component that determines the success of the
RL agent. Previously, the implementations of three potential reward functions
have been presented. To recap, Variant 1 uses pixel-wise differences between
consecutive GUI states to define reward. Variant 2 on the other hand uses the
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change of elements between consecutive states, while Variant 3 keeps track of
seen elements throughout the episode and rewards proportional to the number of
new, previously unseen elements.

To answer RQ4, all three variants will be tested in isolation, leaving all other
components unchanged. In addition, the best-performing variant will be tested
with two reward add-ons, which have previously been described. Reward Add-
On 1 applies logarithmic scaling to the reward, while Reward Add-On 2 replaces
zero (neutral) rewards with a small negative reward to explicitly penalise useless
clicks. These add-ons will be applied to the best-performing reward variant, yield-
ing a total set of four experiments that will inform the design of the final, optimal
reward function.

To aid the evaluation of the reward functions, a qualitative assessment of the
different reward functions is performed, which allows judging the exploratory be-
haviour of the RL agent

6.3 Generalisation Study

As most of the testing and development of the system will be carried out on one
example web app (RWA), the question arises of whether the methodologies gen-
eralise to different web applications. To demonstrate the applicability to another
class of common web apps, an e-commerce system, specifically Shopware 6 [49]
was chosen. The choice was again motivated by the open-source nature of the
system to facilitate future reproducibility and research. The Shopware 6 system
was run using an existing Docker image [16], which allowed for a simple set-up
of the system with demo product data that resembled a real e-commerce system.
A few screenshots from the web app can be seen on Figure 22:

Figure 22: Screenshots from the E-Commerce Store based on Shopware 6, used
to test generalisability to different web apps.

The first experiment, aimed to answer RQ5 simply trains the RL model on the
Shopware 6 system to show the applicability of the system to a different type of
web app. To allow the training to converge and to obtain a well-performing model
that allows for effective exploration of the web app, the training run is extended
to 500,000 steps. The second experiment sets out to answer RQ6, which is done
by using the policy weights from a model that was trained on a different app as
the initial weights. This tests whether the transferrable concepts of interacting
with a different web app can allow the model to be trained more quickly on a
new app. This later experiment is performed by training the model on each of the
two apps (RWA and Shopware 6) and each time initialising the weights obtained
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from training on the other web app. The training runs that test transfer learning
will be limited to only 100,000 steps, as this would be sufficient to demonstrate
faster learning when compared to randomly initialised weights. This makes the
generalisability study constitute three experiments.

6.4 Baselines

Having empirically tested the validity of the architectural choices through abla-
tion, as well as having tested the generalisability of the method to different web
apps, it is important to compare the overall system to external baselines to deter-
mine its relative performance to existing methods. Three baseline experiments will
be performed, which will establish comparable performance scores for a random
approach, a Q-learning method and finally for non-automated testing by human
testers.

All baseline experiments are conducted with the maximum episode length set
to 20. This means that each baseline is tasked to predict a sequence of 20 clicks on
the web app with the objective to maximise exploration, measured by the number
of unique discovered elements. The horizon length of 20 was chosen, as it was
found that 20 clicks are sufficient to explore the major regions and functionality
within the relatively simple web apps considered in these experiments.

6.4.1 Random

To address RQ7, the implementation of the random algorithm is run for 20 time
steps, producing the baseline results used for comparison. To get more reliable
performance results from the random testing, this run is repeated for a total of
20 trials and the mean number of elements discovered per trial is reported. The
baseline is run for both web apps, the RWA and Shopware 6.

6.4.2 Q-Learning

The baseline implementation of the Q-Learning method undergoes the same ex-
perimental setup as the random baseline, thereby producing results that allow
answering RQ8. To summarise, the Q-learning method is run for 20 time steps,
repeated for 20 trials and all trials are run on the RWA and Shopware 6.

6.4.3 Human Testers

The final baseline tests the performance of the most challenging competitor: hu-
man testers. Albeit not an automated testing strategy, human testers are com-
monly used to manually test interactions with the GUI. The experiment relies on
the implementation described previously. To answer RQ9, two pairs of experi-
ments are run:

Both the RWA and the Shopware 6 web apps are tested. Two groups, each
including five student colleagues were asked to take part in the experiment. The

51



6 Experimental Setup

first group of students named the ‘expert’ group, was allowed to first take time to
explore the web apps prior to the experiment to familiarise themselves with the
different states and interactions of the web app. The other group was not allowed
to access the web apps prior to the experiment and they are termed, who are
referred to as the ‘unfamiliar’ or ‘inexperienced’ group.

In summary, this yielded 20 data points across two different web apps and
ten human testers, which allows for an evaluation of the system against a human
baseline.
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7 Experiment Results

In this section, the results of the previously explained experiments are presented
and analysed. First, the results of the ablation study are presented, followed by the
experiments of the generalisation study. Finally, the proposed system undergoes
a relative comparison against baselines and results together with an analysis are
given.

7.1 Ablation Study Results

The ablation study experiments are evaluated by looking at the episodic reward
throughout training. The episodic reward is the total cumulative reward that the
agent is able to produce at a given time during training. Besides high absolute
values, other desirable characteristics for the episodic reward learning curves are
stability and the gradient at which they increase. A stable learning curve implies
that the agent is steadily learning from its environment and making consistent
decisions that contribute to the overall reward. On the other hand, the gradient
at which the learning curves increase represents the rate of the agent’s learning
process; A steep learning curve means that the agent will be able to learn in fewer
training steps.

Ablation Study: CNN Feature Extractor
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Figure 23: Ablation Study Results for the CNN feature extractor, replaced by a
fully-connected ‘flatten’ layer.

The results of the CNN ablation study, depicted in Figure 23, strongly em-
phasise the critical role of the Convolutional Neural Network (CNN) as a feature
extractor for the RL policy. The agent using the CNN exhibits an upward learn-
ing curve, resulting in a high cumulative reward of 180 after 100k steps. In stark
contrast, substituting the CNN with a fully-connected ‘flatten’ layer leads to an
unsatisfying performance, evidenced by a lower, plateaued reward under 60. This
underscores the inefficiency of the flatten layer to extract meaningful features,
thereby impacting the agent’s ability to learn from the screenshot images. Thus,
the CNN proves to be a vital component of the system, thereby answering RQ1.
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Ablation Study: Frame-Stacking
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Figure 24: Ablation Study Results for different frame stack heights.

The effect of frame stacking, a technique used to provide a recent state history
to the agent, is examined by varying the frame stack heights. Frame stack height
represents the number of most recent observations provided to the agent, with
different configurations tried: n = 1 (no frame-stacking), n = 2, n = 3, n = 4 (as
used by prior works [40]), n = 5, and n=10. The results are displayed in Figure
24.

From the data, it becomes apparent that frame stacking has a substantial posi-
tive impact on the agent’s learning capabilities. The agent with n = 1 shows poor
learning efficacy, reaching a plateau around the cumulative reward score of 60
after 100k training steps. On the other hand, all other configurations result in at
least twice the score (>120), showcasing the importance of temporal information
for learning an effective GUI exploration strategy.

As for selecting an optimal stack height, a trade-off exists between providing
sufficient temporal context for complex sequential GUI interactions and avoiding
an excess of information that might inflate the input and hinder efficient learning.
Additionally, larger frame stacks demand greater RAM for storing more extensive
replay buffers.

Both n = 2 and n = 4 configurations yielded the best results, reaching a cumu-
lative reward score of 180 after 100k steps. As the learning curve gradient of the
n = 4 configuration is higher, it suggests that it may outperform n = 3 in extended
training. Given its performance and precedent in the literature [40], the n = 4
configuration was chosen as the optimal parameter, providing an answer to RQ2.
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Ablation Study: Image Pre-Processing (Grayscaling)
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Figure 25: Ablation Study Results for using either RGB inputs or grayscaled
images.

In the image pre-processing experiment (Figure 27), the effectiveness of the
grayscaling technique is assessed by comparing the learning outcomes of agents
receiving either RGB inputs or grayscale images. Grayscaling resulted in a marked
performance improvement, with a final cumulative reward score of 180, as com-
pared to 160 for RGB. This implies that grayscaling, which simplifies the input
by reducing the number of input channels from 12 (as seen with RGB and frame
stacking) to 4 (with stacked grayscale frames), supports the agent’s learning pro-
cess. Importantly, this simplification doesn’t lead to the loss of any vital informa-
tion that might be contained in the colour channels, ensuring effective learning.
Moreover, it offers computational advantages, as it requires less processing and
memory, with the size of the replay buffer also reduced to one-third. Thus, the
grayscaling preprocessing stage proves beneficial, answering RQ3.

Ablation Study: Reward Function Version
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Figure 26: Ablation Study Results for the three different reward variants. Variant
1 (left) relies on visual pixel-level differences between consecutive states. Variant

2 (middle) relies on the difference in elements between consecutive states.
Variant 3 (right) relies on addition of new, previously unseen elements.

Three reward function variants were tested in this experiment, with results
depicted in Figure 27. Notably, each variant presents a vast difference in reward
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magnitudes: Variant 1 (v1) ranges up to 3.5× 106, Variant 2 (v2) approaches 600,
and Variant 3 (v3) reaches up to 200. This discrepancy can be disregarded, as
reward normalisation is applied during training for each sampled batch, which
normalises all rewards into the [0, 1] range.

While reward functions can be challenging to evaluate since they often serve as
the ground truth, these learning curves provide valuable insights into the training
feasibility and stability of each variant. Variant 1 exhibits heavy fluctuation and
lacks steady training progress, rendering it unsuitable. Both v2 and v3 show steady
increases, indicating promising training potential.

A qualitative assessment of each reward function was conducted by observing
the exploratory behaviour of agents in screen recordings after training for 100k
steps. The agent using v2 fell into a repetitive loop of two different states. This
loop, while changing large numbers of elements and thus continuously generating
positive rewards, demonstrated suboptimal exploratory behaviour. Conversely, the
agent using v3 exhibited highly desirable exploratory behaviour, as it could per-
form navigation and exploration through the GUI, evidently seeking previously
unseen elements. In light of these results, Variant 3 was chosen as the most suit-
able reward function.

Ablation Study: Reward Function ‘Add-Ons’
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Figure 27: Ablation of the reward add-ons applied to reward variant 3. The
applied add-ons perform log-scaling and set a small negative reward as the

default when no elements are discovered, instead of zero.

The second reward function experiment examined the effect of applying ‘add-
ons’ to the chosen reward function (v3), as shown in Figure 27. These add-ons
comprised logarithmic scaling and replacing zero rewards with small negative re-
wards, with the aim to explicitly incentivise the agent to avoid unproductive clicks.

Again, a significant absolute scale difference is visible, this time due to the log
scaling. This can be ignored, as reward normalisation is applied to all rewards.
The introduction of logarithmic scaling and a small negative default reward notice-
ably stabilised training, as evidenced by fewer fluctuations and temporary drops
in the episodic reward during the training process.

A qualitative analysis was again performed by examining the agents’ behaviours
in video recordings after 100k training steps. The agent trained with the reward
add-ons visibly wasted fewer clicks compared to its counterpart. Furthermore, the
raw reward function had a preference for states with long lists, as these states
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offered high raw rewards due to the discovery of numerous new elements. Con-
versely, simpler actions, such as clicking a ‘like’ button, which added only a single
new element, were often ignored, leading to unbalanced exploration. Logarithmic
scaling mitigated this issue effectively by reducing the spread between rewards,
thereby promoting a more balanced exploration of the GUI environment. Con-
sequently, this add-on was included in the reward function configuration for the
system. With these results and analysis, an answer to RQ4 was provided.

In summary, this comprehensive ablation study was carried out to evaluate
the significance and performance of each key component in the proposed system.
Through a series of experiments, both numerical and qualitative evidence were
gathered to assess their contribution to the system’s overall performance. Each
component - from feature extraction and frame stacking, to image preprocessing
and reward functions - was thoroughly tested. The outcomes of this study not
only reaffirmed the importance of each element within the context of the system
but also led to informed decisions on optimal configurations. The final system
constitutes the configuration options as outlined in Table 3.

7.2 Generalisation Study Results

This section presents the results of the generalisation study.

The first experiment in the generalisation study aimed to test the applicability
of the developed system beyond the RWA (Financial Application). The reinforce-
ment learning agent was trained from scratch on a different web application, the
e-commerce platform Shopware 6, whether the agent is trainable, and hence ap-
plicable to different web apps.

Generalising: Trainability of the Agent across Apps
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Figure 28: Plots showing training curve for the RWA on the left, which was used
for most of the development, and the e-commerce system Shopware 6 on the
right, showing that the RL agent is generally trainable on different web apps.

In the experiment, the system was trained for 500k steps. Figure 28 illustrates
the side-by-side learning curves with the episode reward throughout training. As
expected, the RWA training showed stable training progress and a steady increase
in reward. The Shopware 6 application also exhibited effective training. As a side
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note, the reward values are not directly comparable across different web appli-
cations due to differences in the number of elements. An interesting observation
was the initial difficulty encountered during the first 50k steps, where the Shop-
ware 6 agent struggled to find rewarding actions. This could be attributed to the
home page of the online store, which only hosts a few links leading to more com-
plex areas of the app, thus requiring more time for the agent to identify actions
to escape this state. Despite this initial hurdle, the agent successfully overcame
this challenge and showed improving rewards thereafter. A qualitative evaluation,
which looked at screen recordings of the agent exploring the web app further con-
firmed the agent’s exploratory capabilities, thereby affirming the system’s capacity
for generalisation and its applicability across different web apps. This analysis
provides an answer to RQ5.

Generalising: Trainability of the Agent across Apps
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Figure 29: Training Progress for randomly initialised weights and transferred
weights from another model. In this case, the weights from the Shopware 6

training run were transferred to the RWA.

The next step towards ensuring the generalisability of the system was to eval-
uate whether a pre-trained agent could be effectively applied across different web
applications. To test this, an experiment was conducted where the initial weights
of an agent were set as the existing weights obtained from training on one web
app, as opposed to random initialisation. Specifically, the weights of an agent
trained for 500k steps on the Shopware 6 e-commerce system were used as the
initial weights for an agent trained on the RWA.

The results, shown in Figure 29, indicate a significantly steeper training progress
compared to random initialisation. The episode reward after 100k steps is almost
double that of the agent with randomly initialised weights. As a point of reference,
a reward level of 200 (indicating that the agent is not fully trained but generally
capable of exploring the web app) is achieved after roughly 40k steps with the pre-
trained agent, while an agent trained with randomly initialised weights requires
approximately 290k steps to reach the same reward level. This represents a seven-
fold speed-up in training time, reducing it to just one hour using this fine-tuning
technique.

These results showcase the potential of transfer learning in expediting the
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training process and indicate the feasibility of creating a general agent, trained
on a variety of applications, that can generalise to various web apps without re-
quiring significant upfront training. With these results, a favourable answer is
given to RQ8.

7.3 Baseline Results

The baseline comparison contextualises the methods proposed in this project within
the broader field of existing methods and literature. Four baseline experiments
were conducted across two web applications. A random algorithm, a Q-learning
method from [3], and human testers were all tasked with exploring the web ap-
plications under test. The success of each testing method was measured by the
number of unique elements discovered over a sequence of 20 clicks within the
web app.

Relative Comparison with Baseline Methods
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Figure 30: Relative Comparison of the proposed method against baselines. The
success of each (automated) testing method is measured by the number of unique

elements that are discovered over a sequence of 20 clicks within the web app.

In the case of the RWA, the random algorithm only managed to uncover an
average of 51 unique elements. This performance was greatly enhanced with the
use of Q-Learning, which discovered around 142 unique elements. An unfamiliar
human tester was able to identify approximately 170 unique elements. Remark-
ably, the proposed method performed excellently, uncovering an average of 359
unique elements, nearly on par with an expert human tester who only managed
to uncover an additional 4 elements (363).

For Shopware 6, the results were similarly patterned: The random algorithm
was significantly less effective, identifying only about 15 unique elements. How-
ever, Q-Learning was more successful, uncovering an average of 150 elements.
A tester unfamiliar with the system found 169 unique elements. The proposed
method showed a strong performance, uncovering 197 unique elements, although
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an expert human tester managed to uncover an even larger number for this app,
finding approximately 291 unique elements in total.

From these results, it is evident that random methods were ineffective with
only 20 steps available, demonstrating poor exploratory performance. In contrast,
the Q-Learning method showed improved results, approximating the level of per-
formance of an inexperienced human tester. Remarkably, the proposed method
performed on par with an expert tester for the RWA and significantly outperformed
an inexperienced human tester in both applications. Finally, the analysis of the ex-
perimental results provides an answer to RQ7, RQ8 and RQ9.
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8 Evaluation

This section evaluates the project with respect to the project objectives outlined in
the introduction of this report (1.3). It does so by evaluating the achievements of
this project while putting it in the wider context of existing literature.

The first objective was the formulation of autonomous GUI testing as an RL
problem. The approach pursued in this project stands out from the predomi-
nant focus on Q-learning-based methods in prior work. Traditional Q-learning
approaches usually demand an abstracted state representation that encapsulates
detailed information about a discrete set of possible actions in the current GUI
view. This requirement often imposes significant constraints on the transferability
of these systems between different platforms, such as between Android Apps and
Web Apps. It also leads to difficulties in hand-picking suitable information that
should be incorporated into the state representation. For example, it might not
be immediately clear whether a simple list of clickable elements suffices or what
additional information, such as the colour or text of the element, should also be
considered.

In contrast, the proposed method in this project utilises screenshots as a means
to represent states. This approach mirrors how a human user perceives the GUI
(visually) and provides a more elegant and universal solution to encapsulating the
state of the GUI. By relying entirely on screenshots as the state representation, the
transferability across platforms is enhanced.

Furthermore, the proposed method leverages a continuous action space that
mimics natural human interaction with the GUI. Instead of selecting an inter-
actable element from the screen, a user typically clicks at a specific coordinate
based on their visual interpretation. This approach makes the system entirely end-
to-end and doesn’t rely on any assumptions about the internal state information,
such as element locations, of the application under test.

The next objective, which demanded the development of a ‘compatible RL en-
vironment that enables RL agents to interact with the GUIs of browser-based web
apps’ was also successfully addressed. By implementing a standardised Gymna-
sium environment, the development of RL algorithms was notably simplified. To
the author’s knowledge, the code released with this project is the only publicly
available implementation of a web browser RL environment, thereby kickstarting
future research in this area.

The objective of finding a suitable reward function was realised by implement-
ing different options and performing experiments to empirically evaluate their
respective suitability in the context of autonomously testing web apps. At its core,
the reward function proposed in this system relies on finding as many possible
unique elements while interacting with the GUI. Prior literature by [18] quanti-
fied reward by the maximisation of unique URLs visited, which disregards dynamic
interactions within a single page of a web app, where the URL may not change.
The approach of using a visual pixel-level difference, as utilised by [14] was deter-
mined to be ineffective for the problem at hand. Likewise, the change in elements
between consecutive states was used by [54] and also proved to be ineffective as
it allowed the agent to enter infinite back-and-forth loops without promoting ex-
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ploration. Using code coverage, as done by [60] is against the philosophy of the
presented approach in this project, as it would require access to the source code
of the application, breaking the end-to-end nature of the method.

In addition to the reward function, an extensive ablation study was carried
out to target the objective of determining suitable architectural choices for the au-
tonomous testing system. In particular, the use of frame-stacking was a novel con-
tribution, which was supported by empirical evidence and has been previously un-
seen in the related literature. While a related method [18] used RGB images, the
proposed system performed grayscaling, which evidently increased performance
and sped up training.

The last two objectives concerned the implementation of baseline methods
and an overall system evaluation. A random and Q-learning algorithm was im-
plemented and tested against the same set of web apps to establish comparable
baseline results. Additionally, human testers were tasked to explore the web app,
which yielded a baseline of how effectively humans - the target users of GUIs - are
themselves at thoroughly testing a web app. The results allowed for a quantitative
comparison and showed that the proposed method outperforms the alternative op-
tions for test automation. Furthermore, the RL algorithm surpassed the abilities of
an inexperienced tester and reached the levels of an expert human tester in certain
scenarios. In terms of exploratory performance, these findings are in line with the
results produced by a related method [18]. However, the training speed, enabled
through a high-throughput architecture paired with the ability to perform transfer
learning from existing weights is unprecedented and heavily simplifies the time
and computational effort required to set up the system for a custom application.

8.1 Limitations

Despite the significant achievements and positive results, it is essential to acknowl-
edge the limitations inherent to the proposed method:

Firstly, the current implementation only supports click actions. In contrast,
modern GUIs often demand more complex interaction types, including swipes,
scrolls, and text inputs. This limitation could potentially restrict access to certain
areas of the GUI interface, which might only be navigable via these more sophisti-
cated action types.

Secondly, the conducted tests are entirely unguided. Although the exploration
algorithm’s primary goal is to cover as many different areas of the web application
as possible, it doesn’t guarantee the exploration of specific interaction sequences.
For instance, in the context of an e-commerce system, testing key functionalities
like the product purchasing process is crucial. However, when relying fully on
the automated testing system proposed in this project, there is no guarantee that
certain desirable interaction sequences get explored. This means that for certain
interactions, it may be important to manually define critical GUI interaction se-
quences using scripted techniques, rather than relying on this approach to test
such sequences. It is essential to note that this challenge isn’t exclusive to the
proposed method but remains a general issue with all known fully automated GUI
testing methods.
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Finally, the robustness of the trained agent to GUI changes presents an open
question. Web applications are frequently subject to updates and alterations that
could significantly modify the GUI. These changes might range from subtle vi-
sual tweaks to complete interface overhauls. It is currently unclear how well the
trained agent can adapt to these drastic changes without undergoing retraining.
While the proposed method demonstrates a capacity for transfer learning, which
may somewhat alleviate this issue, extensive alterations to the GUI could still ne-
cessitate a new training phase. Such a limitation would impose a constraint on the
method’s practical application, as maintaining up-to-date models that can compe-
tently interact with the latest versions of web applications could require a contin-
uous cycle of retraining and deployment.
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9 Conclusions and Further Work

This project represents a significant contribution to the field of autonomous GUI
testing, addressing several limitations of existing methods while introducing new
approaches and insights. Herein, we reflect upon the key design choices, chal-
lenges, and iterative improvements that were instrumental to the project’s success.

Executing a reinforcement learning algorithm on a real-world problem proved
to be remarkably challenging, characterised by a delicate balance between numer-
ous parameters and architectural choices. Poorly chosen hyperparameters or even
slight errors in the reward function rendered learning impossible, underscoring
the sensitivity of the RL training process. A significant portion of the project’s
duration was dedicated to fine-tuning this balance.

Importantly, the importance of software design became particularly evident in
the early stages of the project. Initial versions of the web browser environment
were practically unusable due to poor training throughput, which would have
completely hindered training or made it prohibitively slow. Speeding up the train-
ing process, through code performance improvements and parallelised training,
became a crucial prerequisite to effective experimentation and fine-tuning. Thus,
the project has highlighted the necessity of considering computational efficiency
alongside algorithmic design when implementing RL in practical settings.

The project’s iterative nature, characterised by the formulation of hypotheses
and their subsequent testing through training trial runs, proved instrumental in
its ultimate success. This process of repeatable experimentation led to hundreds
of trial runs performed throughout the project’s duration, each contributing to the
refined system that was eventually realised.

A number of novel contributions also stem from this project, each serving to
enrich the landscape of autonomous GUI testing. A uniquely formulated reward
scheme was developed to better align the agent’s behaviour with the exploration
and testing objectives, which allowed them to navigate modern web apps. In
another first, the project saw the deployment of the potent SAC algorithm for au-
tomated GUI testing, leveraging its robustness and efficiency for the task at hand.
Perhaps most importantly, this project represents the first attempt to investigate
the generalisability and transferability of image-based deep RL methods in this
context. This exploration opens up new avenues for developing more versatile
and universally applicable testing systems, paving the way for further advance-
ments in this field.

9.1 Further Work

While the project has made considerable strides in autonomous GUI testing, there
remain several avenues for further exploration and improvement.

Firstly, temporal information could be better potentially integrated into the
agent’s state representation. While frame-stacking was used in this project, a po-
tentially more expressive and efficient approach could be the use of Long Short-
Term Memory networks (LSTMs) as done by [18]. By capturing temporal de-
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pendencies more effectively, LSTMs could help the agent to better understand
the implications of its actions over time. A comparative study between LSTMs
and frame-stacking could shed more light on their respective strengths and weak-
nesses, thereby informing more effective designs for future systems.

Secondly, the current action space could be expanded to cover a wider range
of interactions. The current system is limited to click actions, but modern web
applications often demand more complex interactions like scrolls, swipes, or even
drag-and-drop actions. By adding support for these additional action types, the
system could become even more effective at navigating and testing complex GUIs.

Finally, there is the challenge of handling text fields, which are ubiquitous in
modern web applications. One possibility could be to integrate language mod-
els such as GPT into the system, which could then be used to generate context-
appropriate text inputs dynamically. Such a feature would eliminate the need for
manual text input definition, thus further enhancing the autonomy and effective-
ness of the testing system. The integration of visual and textual understanding
within the same RL agent represents an exciting area for future research.
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Appendix

Code Repository

The full code repository is downloadable from GitHub:
https://github.com/timeo-schmidt/gui-testing

The repository contains the following:

• Configuration Files

• Training Scripts

• Inference Scripts (to test web apps and obtain JS Error Logs)

• Web Browser Environment

• High-Level Web App Interface

• Baseline Implementations

• Evaluation Scripts

• Experiment Orchestration Scripts

User Guide

The most up-to-date user-guide is published on the GitHub repository in the README.md
file: https://github.com/timeo-schmidt/gui-testing

A brief guide on how to set-up, train and test the repository is outlined in the
following steps:

1. Clone the repository

2. Install the python packages associated with the repository:
(pip install -e .)

3. Set up your web application on a local development server

4. Adjust settings in the config.yaml, where necessary. A description of the
the important configuration options is provided in the following Appendix
section.

5. Run the training script: python3 train.py (this may take multiple hours,
depending on your hardware and weight initialisation)

6. To execute your tested web app testing system, run python3 test.py The
testing artefacts will be saved to the specified artefact directory, revealing JS
Errors and an associated video recording.

https://github.com/timeo-schmidt/gui-testing
https://github.com/timeo-schmidt/gui-testing


Configuration Options

Configuration Option
Suggested
Value

Description

browser_reset_interval 1000 Restart interval of the browser to
limit memory build-up.

viewport_dimension [1280,720] Size of the viewport for the
browser.

headless_mode true
Allows the browser to invisibly
run in the background without
rendering a window.

Table 4: Overview of Important Web App Interface Configuration Options

Configuration
Option

Suggested Value Description

test_url "http://localhost" Accessibly URL for the web
app

n_envs 10 Number of concurrent, vec-
torised environments

frame_stack 4 Height of frame stack, set
to 1 for no stacking.

downscale_size [128,128] The downscaling resolu-
tion for the screenshots

log_steps false Whether all actions and re-
wards should be logged

gray_scale true Applies the grayscaling
preprocessing stage

reward_variant 3 Set to 1,2 or 3 correspond-
ing to reward variants

logarithmic_scaling true Whether rewards should be
log-scaled

negative_default -0.01 Replaces 0 rewards by this
number. Set to 0 to disable

Table 5: Overview of Important Environment Configuration Options



Configuration
Option

Suggested Value Description

max_buffer_size 100000 The size of the replay buffer.
Older entries are deleted.

policy_type "CNNPolicy"
The type of feature extractor. Re-
place my "MlpPolicy" to use a
flatten layer.

total_timesteps 500000 The total number of training
time steps.

seed 42 The seed of the random number
generators. Keep constant.

save_freq 5000 The frequency at which weights
should be saved.

log_tensorboard true Enables TensorBoard Logging.

artefact_base_path "./experiments/" The save path of the training
artefacts, including checkpoints.

Table 6: Overview of Important Algorithm Configuration Options

Configuration
Option

Suggested Value Description

deterministic true Disables noise in the policy by
using the distribution mean.

model_load_path "weights.zip" Path of the model .zip file with
the saved weight checkpoint

wait_seconds 0.5 The time to wait between con-
secutive actions

log_errors true Enables listening to Browser
Console logs and saves them.

record_video true Enables video a video recording
and saves it.

artefact_base_path "./test_results" The location at which to store
the testing artefacts.

Table 7: Overview of Important Algorithm Executor (Inference) Configuration
Options
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